当前位置:
X-MOL 学术
›
Nat. Commun.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules.
Nature Communications ( IF 14.7 ) Pub Date : 2017-01-23 , DOI: 10.1038/ncomms14243 Chao Wang , Sung-Wook Nam , John M. Cotte , Christopher V. Jahnes , Evan G. Colgan , Robert L. Bruce , Markus Brink , Michael F. Lofaro , Jyotica V. Patel , Lynne M. Gignac , Eric A. Joseph , Satyavolu Papa Rao , Gustavo Stolovitzky , Stanislav Polonsky , Qinghuang Lin
Nature Communications ( IF 14.7 ) Pub Date : 2017-01-23 , DOI: 10.1038/ncomms14243 Chao Wang , Sung-Wook Nam , John M. Cotte , Christopher V. Jahnes , Evan G. Colgan , Robert L. Bruce , Markus Brink , Michael F. Lofaro , Jyotica V. Patel , Lynne M. Gignac , Eric A. Joseph , Satyavolu Papa Rao , Gustavo Stolovitzky , Stanislav Polonsky , Qinghuang Lin
Wafer-scale fabrication of complex nanofluidic systems with integrated electronics is essential to realizing ubiquitous, compact, reliable, high-sensitivity and low-cost biomolecular sensors. Here we report a scalable fabrication strategy capable of producing nanofluidic chips with complex designs and down to single-digit nanometre dimensions over 200 mm wafer scale. Compatible with semiconductor industry standard complementary metal-oxide semiconductor logic circuit fabrication processes, this strategy extracts a patterned sacrificial silicon layer through hundreds of millions of nanoscale vent holes on each chip by gas-phase Xenon difluoride etching. Using single-molecule fluorescence imaging, we demonstrate these sacrificial nanofluidic chips can function to controllably and completely stretch lambda DNA in a two-dimensional nanofluidic network comprising channels and pillars. The flexible nanofluidic structure design, wafer-scale fabrication, single-digit nanometre channels, reliable fluidic sealing and low thermal budget make our strategy a potentially universal approach to integrating functional planar nanofluidic systems with logic circuits for lab-on-a-chip applications.
中文翻译:
晶圆级牺牲纳米流体芯片的集成,用于检测和操纵单个DNA分子。
晶圆级制造具有集成电子器件的复杂纳米流体系统对于实现无处不在,紧凑,可靠,高灵敏度和低成本的生物分子传感器至关重要。在这里,我们报告了一种可扩展的制造策略,该策略能够生产具有复杂设计的纳米流体芯片,并能在200毫米晶圆规模上降低至单位个数纳米尺寸。与半导体行业标准的互补金属氧化物半导体逻辑电路制造工艺兼容,该策略通过气相二氟化氙蚀刻通过每个芯片上的数亿个纳米级排气孔来提取图案化的牺牲硅层。使用单分子荧光成像,我们证明了这些牺牲性纳米流体芯片可以在包含通道和支柱的二维纳米流体网络中发挥功能,以可控制和完全拉伸lambda DNA。灵活的纳米流体结构设计,晶圆级制造,单位数纳米通道,可靠的流体密封和低热预算使我们的策略成为将功能性平面纳米流体系统与逻辑电路集成到芯片实验室的潜在通用方法。
更新日期:2017-01-24
中文翻译:
晶圆级牺牲纳米流体芯片的集成,用于检测和操纵单个DNA分子。
晶圆级制造具有集成电子器件的复杂纳米流体系统对于实现无处不在,紧凑,可靠,高灵敏度和低成本的生物分子传感器至关重要。在这里,我们报告了一种可扩展的制造策略,该策略能够生产具有复杂设计的纳米流体芯片,并能在200毫米晶圆规模上降低至单位个数纳米尺寸。与半导体行业标准的互补金属氧化物半导体逻辑电路制造工艺兼容,该策略通过气相二氟化氙蚀刻通过每个芯片上的数亿个纳米级排气孔来提取图案化的牺牲硅层。使用单分子荧光成像,我们证明了这些牺牲性纳米流体芯片可以在包含通道和支柱的二维纳米流体网络中发挥功能,以可控制和完全拉伸lambda DNA。灵活的纳米流体结构设计,晶圆级制造,单位数纳米通道,可靠的流体密封和低热预算使我们的策略成为将功能性平面纳米流体系统与逻辑电路集成到芯片实验室的潜在通用方法。