当前位置:
X-MOL 学术
›
Acc. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2016-12-22 00:00:00 , DOI: 10.1021/acs.accounts.6b00474 Patrick Preuster 1 , Christian Papp 2 , Peter Wasserscheid 1, 3
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2016-12-22 00:00:00 , DOI: 10.1021/acs.accounts.6b00474 Patrick Preuster 1 , Christian Papp 2 , Peter Wasserscheid 1, 3
Affiliation
The need to drastically reduce CO2 emissions will lead to the transformation of our current, carbon-based energy system to a more sustainable, renewable-based one. In this process, hydrogen will gain increasing importance as secondary energy vector. Energy storage requirements on the TWh scale (to bridge extended times of low wind and sun harvest) and global logistics of renewable energy equivalents will create additional driving forces toward a future hydrogen economy. However, the nature of hydrogen requires dedicated infrastructures, and this has prevented so far the introduction of elemental hydrogen into the energy sector to a large extent. Recent scientific and technological progress in handling hydrogen in chemically bound form as liquid organic hydrogen carrier (LOHC) supports the technological vision that a future hydrogen economy may work without handling large amounts of elemental hydrogen. LOHC systems are composed of pairs of hydrogen-lean and hydrogen-rich organic compounds that store hydrogen by repeated catalytic hydrogenation and dehydrogenation cycles. While hydrogen handling in the form of LOHCs allows for using the existing infrastructure for fuels, it also builds on the existing public confidence in dealing with liquid energy carriers. In contrast to hydrogen storage by hydrogenation of gases, such as CO2 or N2, hydrogen release from LOHC systems produces pure hydrogen after condensation of the high-boiling carrier compounds.
中文翻译:
液态有机氢载体(LOHC):迈向无氢氢经济
大幅减少CO 2的需求排放将导致我们目前的碳基能源系统转变为更可持续,可再生的能源系统。在这个过程中,氢将作为次要能量矢量越来越重要。TWh规模的能源存储要求(以弥合长时间的低风和日照)和可再生能源等效物的全球物流将为未来的氢经济创造更多的推动力。然而,氢的性质需要专用的基础设施,到目前为止,这在很大程度上阻止了将元素氢引入能源领域。在处理化学键合形式的氢作为液态有机氢载体(LOHC)方面的最新科学技术进展支持了以下技术远景,即未来的氢经济可以在不处理大量元素氢的情况下发挥作用。LOHC系统由成对的贫氢和富氢有机化合物组成,它们通过重复的催化加氢和脱氢循环来存储氢。尽管以LOHC形式处理氢气可以使用现有的燃料基础设施,但它也建立在现有公众对处理液态能源载体的信心上。与通过气体(例如一氧化碳)加氢来储氢相反 LOHC系统由成对的贫氢和富氢有机化合物组成,它们通过重复的催化加氢和脱氢循环来存储氢。尽管以LOHC形式处理氢气可以使用现有的燃料基础设施,但它也建立在现有公众对处理液态能源载体的信心上。与通过气体(例如一氧化碳)加氢来储氢相反 LOHC系统由成对的贫氢和富氢有机化合物组成,它们通过重复的催化加氢和脱氢循环来存储氢。尽管以LOHC形式处理氢气可以使用现有的燃料基础设施,但它也建立在现有公众对处理液态能源载体的信心上。与通过气体(例如一氧化碳)加氢来储氢相反2或N 2,从LOHC系统释放的氢在高沸点载体化合物缩合后产生纯氢。
更新日期:2016-12-22
中文翻译:
液态有机氢载体(LOHC):迈向无氢氢经济
大幅减少CO 2的需求排放将导致我们目前的碳基能源系统转变为更可持续,可再生的能源系统。在这个过程中,氢将作为次要能量矢量越来越重要。TWh规模的能源存储要求(以弥合长时间的低风和日照)和可再生能源等效物的全球物流将为未来的氢经济创造更多的推动力。然而,氢的性质需要专用的基础设施,到目前为止,这在很大程度上阻止了将元素氢引入能源领域。在处理化学键合形式的氢作为液态有机氢载体(LOHC)方面的最新科学技术进展支持了以下技术远景,即未来的氢经济可以在不处理大量元素氢的情况下发挥作用。LOHC系统由成对的贫氢和富氢有机化合物组成,它们通过重复的催化加氢和脱氢循环来存储氢。尽管以LOHC形式处理氢气可以使用现有的燃料基础设施,但它也建立在现有公众对处理液态能源载体的信心上。与通过气体(例如一氧化碳)加氢来储氢相反 LOHC系统由成对的贫氢和富氢有机化合物组成,它们通过重复的催化加氢和脱氢循环来存储氢。尽管以LOHC形式处理氢气可以使用现有的燃料基础设施,但它也建立在现有公众对处理液态能源载体的信心上。与通过气体(例如一氧化碳)加氢来储氢相反 LOHC系统由成对的贫氢和富氢有机化合物组成,它们通过重复的催化加氢和脱氢循环来存储氢。尽管以LOHC形式处理氢气可以使用现有的燃料基础设施,但它也建立在现有公众对处理液态能源载体的信心上。与通过气体(例如一氧化碳)加氢来储氢相反2或N 2,从LOHC系统释放的氢在高沸点载体化合物缩合后产生纯氢。