当前位置:
X-MOL 学术
›
J. Clean. Prod.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Assessing the impact of artificial intelligence and circular economy on the healthcare sector: An empirical evidence from the Indian context
Journal of Cleaner Production ( IF 9.7 ) Pub Date : 2024-12-18 , DOI: 10.1016/j.jclepro.2024.144315 Ankita Jain, Amit Vishwakarma, Dhananjoy Bhakta
Journal of Cleaner Production ( IF 9.7 ) Pub Date : 2024-12-18 , DOI: 10.1016/j.jclepro.2024.144315 Ankita Jain, Amit Vishwakarma, Dhananjoy Bhakta
The Indian healthcare system is dealing with several challenges, including biological waste, transportation as well as logistics of life-saving medications, and inadequate infrastructure. Stakeholders must properly address these challenges to enhance the performance of the healthcare sector. Literature seeks stakeholder commitment and willingness to embrace artificial intelligence and the principles of the circular economy as possible solutions to the challenges. So this study considers four parameters, i.e., stakeholder commitment, circular economy, artificial intelligence, and healthcare performance. It ascertains each parameter’s (stakeholder commitment, circular economy, and artificial intelligence) contribution to healthcare performance. In addition, it determines whether a relationship exists between the four parameters. Artificial intelligence supports the healthcare sector by providing better inventory management, customer–supplier relationships, and efficient logistics service. This improves the quality of services. A circular economy ensures the reuse of leftover healthcare products, and recycling and ensures sustainability. This lowers the cost for the firms. This study was conducted empirically. Initially, we prepare a questionnaire and collect responses from healthcare firm stakeholders. A total of 261 responses are recorded, and these datasets are analyzed by R. A psych package is used for the data analysis. SEMinR package is used for the development of measurement and structural models. The research finding represents that all three parameters contribute to improving healthcare performance. Stakeholder commitment ( = 0.323) is the major driving force. Stakeholders prioritize implementing circular economy principles ( = 0.247) above artificial intelligence ( = 0.122). However, the potential capacity of artificial intelligence ( = 0.207) prevails over that of the circular economy ( = 0.167) when these two are compared. The comparison shows that Indian healthcare firms lack the necessary infrastructure to implement artificial intelligence, while they implement circular economy practices on a much wider scale.
中文翻译:
评估人工智能和循环经济对医疗保健行业的影响:来自印度背景的实证证据
印度医疗保健系统正在应对多项挑战,包括生物废物、运输以及救命药物的物流以及基础设施不足。利益相关者必须妥善应对这些挑战,以提高医疗保健行业的绩效。文献寻求利益相关者的承诺和意愿,以接受人工智能和循环经济原则作为应对挑战的可能解决方案。因此,本研究考虑了四个参数,即利益相关者承诺、循环经济、人工智能和医疗保健绩效。它确定了每个参数(利益相关者承诺、循环经济和人工智能)对医疗保健绩效的贡献。此外,它还确定四个参数之间是否存在关系。人工智能通过提供更好的库存管理、客户-供应商关系和高效的物流服务来支持医疗保健行业。这提高了服务质量。循环经济确保剩余医疗保健产品的再利用和回收,并确保可持续性。这降低了公司的成本。这项研究是实证进行的。最初,我们准备一份调查问卷并收集医疗保健公司利益相关者的回复。总共记录了 261 个响应,这些数据集由 R 进行分析。心理学包用于数据分析。SEMinR 软件包用于开发测量和结构模型。研究结果表明,所有三个参数都有助于提高医疗保健绩效。利益相关者的承诺 ( = 0.323) 是主要驱动力。利益相关者优先实施循环经济原则 ( = 0.247) 高于人工智能 ( = 0.122)。然而,当将人工智能的潜在容量 ( = 0.207) 与循环经济 ( = 0.167) 进行比较时,人工智能的潜在容量优于循环经济的潜在容量 ( = 0.167)。比较表明,印度医疗保健公司缺乏实施人工智能所需的基础设施,而他们却在更广泛的范围内实施循环经济实践。
更新日期:2024-12-18
中文翻译:
评估人工智能和循环经济对医疗保健行业的影响:来自印度背景的实证证据
印度医疗保健系统正在应对多项挑战,包括生物废物、运输以及救命药物的物流以及基础设施不足。利益相关者必须妥善应对这些挑战,以提高医疗保健行业的绩效。文献寻求利益相关者的承诺和意愿,以接受人工智能和循环经济原则作为应对挑战的可能解决方案。因此,本研究考虑了四个参数,即利益相关者承诺、循环经济、人工智能和医疗保健绩效。它确定了每个参数(利益相关者承诺、循环经济和人工智能)对医疗保健绩效的贡献。此外,它还确定四个参数之间是否存在关系。人工智能通过提供更好的库存管理、客户-供应商关系和高效的物流服务来支持医疗保健行业。这提高了服务质量。循环经济确保剩余医疗保健产品的再利用和回收,并确保可持续性。这降低了公司的成本。这项研究是实证进行的。最初,我们准备一份调查问卷并收集医疗保健公司利益相关者的回复。总共记录了 261 个响应,这些数据集由 R 进行分析。心理学包用于数据分析。SEMinR 软件包用于开发测量和结构模型。研究结果表明,所有三个参数都有助于提高医疗保健绩效。利益相关者的承诺 ( = 0.323) 是主要驱动力。利益相关者优先实施循环经济原则 ( = 0.247) 高于人工智能 ( = 0.122)。然而,当将人工智能的潜在容量 ( = 0.207) 与循环经济 ( = 0.167) 进行比较时,人工智能的潜在容量优于循环经济的潜在容量 ( = 0.167)。比较表明,印度医疗保健公司缺乏实施人工智能所需的基础设施,而他们却在更广泛的范围内实施循环经济实践。