当前位置:
X-MOL 学术
›
Rheumatology
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A multivariable prediction model to identify anti-CCP positive people in those with non-specific musculoskeletal symptoms in primary care
Rheumatology ( IF 4.7 ) Pub Date : 2024-12-10 , DOI: 10.1093/rheumatology/keae653 Heidi J Siddle, Michelle Wilson, Jacqueline L Nam, Leticia Garcia-Montoya, Laurence Duquenne, Kulveer Mankia, Paul Emery, Elizabeth M A Hensor
Rheumatology ( IF 4.7 ) Pub Date : 2024-12-10 , DOI: 10.1093/rheumatology/keae653 Heidi J Siddle, Michelle Wilson, Jacqueline L Nam, Leticia Garcia-Montoya, Laurence Duquenne, Kulveer Mankia, Paul Emery, Elizabeth M A Hensor
Objectives We aimed to develop a prediction model identifying people presenting to primary care with musculoskeletal symptoms likely to be anti-CCP positive and therefore at risk of developing rheumatoid arthritis (RA). Methods Participants aged ≥16 years, with new-onset non-specific musculoskeletal symptoms and no history of clinical synovitis, completed a symptom questionnaire and had an anti-CCP test. Model development used LASSO-penalised logistic regression, performance was assessed using area under the receiver operating characteristic curve (AUROC) and decision curve analysis, model over-fit was estimated using bootstrapping and cross-validation. Participants were followed-up at 12 months for RA or seronegative/undifferentiated inflammatory arthritis (IA) diagnosis. Results Analysis included 6879 participants; 203 (2.95%) anti-CCP positive. Eleven predictors were retained: male sex, first-degree relative with RA, ever smoked, and joint pain in: back, neck, shoulders, wrists, hands/fingers, thumbs, knees, feet/toes. AUROC was 0.65 (95% CI:(0.61, 0.69), optimism = 0.03). Using a 4% decision threshold, the model recommended an anti-CCP test in 1288 (18.7%) participants, 78 (6.1%) of whom were anti-CCP positive, compared with 125/5591 (2.2%) below the threshold. Net benefit was 0.0040 (0.0020 corrected). Forty-eight participants were diagnosed with IA/RA within 12 months. Of those who were above the threshold and anti-CCP positive, 32.1% developed IA/RA compared with 0.4% of those who were anti-CCP negative. Of those below the threshold, 0.3% were diagnosed with IA/RA. Conclusions Targeted anti-CCP testing in primary care may aid earlier identification of people at risk of RA, prompting specialist referral to rheumatology for earlier diagnosis and initiation of disease modifying therapy.
中文翻译:
一个多变量预测模型,用于识别初级保健中具有非特异性肌肉骨骼症状的人群中的抗 CCP 阳性人群
目的 我们旨在开发一个预测模型,识别出在初级保健机构就诊的肌肉骨骼症状可能是抗 CCP 阳性,因此有患类风湿性关节炎 (RA) 风险的人。方法 参与者年龄≥16 岁,新发非特异性肌肉骨骼症状,无临床滑膜炎病史,完成症状问卷并进行抗 CCP 测试。模型开发使用 LASSO 惩罚 logistic 回归,使用受试者工作特征曲线下面积 (AUROC) 和决策曲线分析评估性能,使用自举和交叉验证估计模型过拟合。参与者在 12 个月时接受 RA 或血清阴性/未分化炎症性关节炎 (IA) 诊断的随访。结果分析包括 6879 名参与者;203 例 (2.95%) 抗 CCP 阳性。保留了 11 个预测因子: 男性、RA 一级亲属、曾经吸烟以及以下部位的关节疼痛: 背部、颈部、肩部、手腕、手/手指、拇指、膝盖、脚/脚趾。AUROC 为 0.65 (95% CI:(0.61, 0.69),乐观 = 0.03)。该模型使用 4% 的决策阈值,建议对 1288 名 (18.7%) 参与者进行抗 CCP 测试,其中 78 名 (6.1%) 患者抗 CCP 阳性,而低于阈值的 125/5591 名 (2.2%)。净收益为 0.0040(校正后为 0.0020)。48 名参与者在 12 个月内被诊断出患有 IA/RA。在高于阈值且抗 CCP 阳性的患者中,32.1% 发生 IA/RA,而抗 CCP 阴性的患者中为 0.4%。在低于阈值的患者中,0.3% 被诊断患有 IA/RA。 结论 在初级保健机构中进行有针对性的抗 CCP 检测可能有助于早期识别有 RA 风险的人群,促使专科医生转诊至风湿病科进行早期诊断和开始疾病修正治疗。
更新日期:2024-12-10
中文翻译:
一个多变量预测模型,用于识别初级保健中具有非特异性肌肉骨骼症状的人群中的抗 CCP 阳性人群
目的 我们旨在开发一个预测模型,识别出在初级保健机构就诊的肌肉骨骼症状可能是抗 CCP 阳性,因此有患类风湿性关节炎 (RA) 风险的人。方法 参与者年龄≥16 岁,新发非特异性肌肉骨骼症状,无临床滑膜炎病史,完成症状问卷并进行抗 CCP 测试。模型开发使用 LASSO 惩罚 logistic 回归,使用受试者工作特征曲线下面积 (AUROC) 和决策曲线分析评估性能,使用自举和交叉验证估计模型过拟合。参与者在 12 个月时接受 RA 或血清阴性/未分化炎症性关节炎 (IA) 诊断的随访。结果分析包括 6879 名参与者;203 例 (2.95%) 抗 CCP 阳性。保留了 11 个预测因子: 男性、RA 一级亲属、曾经吸烟以及以下部位的关节疼痛: 背部、颈部、肩部、手腕、手/手指、拇指、膝盖、脚/脚趾。AUROC 为 0.65 (95% CI:(0.61, 0.69),乐观 = 0.03)。该模型使用 4% 的决策阈值,建议对 1288 名 (18.7%) 参与者进行抗 CCP 测试,其中 78 名 (6.1%) 患者抗 CCP 阳性,而低于阈值的 125/5591 名 (2.2%)。净收益为 0.0040(校正后为 0.0020)。48 名参与者在 12 个月内被诊断出患有 IA/RA。在高于阈值且抗 CCP 阳性的患者中,32.1% 发生 IA/RA,而抗 CCP 阴性的患者中为 0.4%。在低于阈值的患者中,0.3% 被诊断患有 IA/RA。 结论 在初级保健机构中进行有针对性的抗 CCP 检测可能有助于早期识别有 RA 风险的人群,促使专科医生转诊至风湿病科进行早期诊断和开始疾病修正治疗。