当前位置: X-MOL 学术Geroscience › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A multi-stage feature selection method to improve classification of potential super-agers and cognitive decliners using structural brain MRI data—a UK biobank study
GeroScience ( IF 5.3 ) Pub Date : 2024-12-10 , DOI: 10.1007/s11357-024-01458-9
Parvin Mohammadiarvejeh, Mohammad Fili, Alice Dawson, Brandon S. Klinedinst, Qian Wang, Shannin Moody, Neil Barnett, Amy Pollpeter, Brittany Larsen, Tianqi Li, Sara A. Willette, Jonathan P. Mochel, Karin Allenspach, Guiping Hu, Auriel A. Willette

Cognitive aging is described as the age-related decline in areas such as memory, executive function, reasoning, and processing speed. Super-Agers, adults over 80 years old, have cognitive function performance comparable to middle-aged adults. To improve cognitive reserve and potentially decrease Alzheimer’s disease (AD) risk, it is essential to contrast changes in regional brain volumes between “Positive-Agers” who have superior cognitive performance compared to their age peers but are not 80 years old yet and aging adults who show cognitive decline (i.e., “Cognitive Decliners”). Using longitudinal cognitive tests over 7–9 years in UK Biobank, principal component analysis (PCA) was first applied to four cognitive domains to create a general cognition (GC) composite score. The GC score was then used to identify latent cognitive groups. Given cognitive groups as the target variable and structural magnetic resonance imaging (sMRI) data and demographics as predictors, we developed a multi-stage feature selection algorithm to identify the most important features. We then trained a Random Forest (RF) classifier on the final set of 54 selected sMRI and covariate predictors to distinguish between Positive-Agers and Cognitive Decliners. The RF model achieved an AUC of 73%. The top 6 features were age, education, brain total surface area, the area of pars orbitalis, mean intensity of the thalamus, and superior frontal gyrus surface area. Prediction of cognitive trajectory types using sMRI may improve our understanding of successful cognitive aging.



中文翻译:


一种多阶段特征选择方法,使用结构性脑部 MRI 数据改进潜在超级老年者和认知衰退者的分类——英国生物样本库研究



认知衰老被描述为与年龄相关的记忆力、执行功能、推理和处理速度等方面的下降。超级老年人,即 80 岁以上的成年人,其认知功能表现与中年人相当。为了提高认知储备并可能降低阿尔茨海默病 (AD) 风险,必须对比认知能力优于同龄人但尚未 80 岁的“积极衰老者”与表现出认知能力下降的老年人(即“认知衰退者”)之间的区域脑容量变化。使用英国生物样本库 7-9 年的纵向认知测试,首先将主成分分析 (PCA) 应用于四个认知领域,以创建一般认知 (GC) 综合评分。然后使用 GC 评分来识别潜在的认知群体。以认知群体为目标变量,以结构磁共振成像 (sMRI) 数据和人口统计学为预测因子,我们开发了一种多阶段特征选择算法来识别最重要的特征。然后,我们在最后一组 54 个选定的 sMRI 和协变量预测器上训练了随机森林 (RF) 分类器,以区分 Positive-Agers 和 Cognitive Decliners。RF 模型实现了 73% 的 AUC。前 6 个特征是年龄、教育程度、大脑总表面积、眶部面积、丘脑平均强度和额上回表面积。使用 sMRI 预测认知轨迹类型可能会提高我们对成功认知衰老的理解。

更新日期:2024-12-10
down
wechat
bug