当前位置:
X-MOL 学术
›
J. Ind. Inf. Integr.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Implementation and evaluation of a smart machine monitoring system under industry 4.0 concept
Journal of Industrial Information Integration ( IF 10.4 ) Pub Date : 2024-11-29 , DOI: 10.1016/j.jii.2024.100746 Jagmeet Singh, Amandeep Singh, Harwinder Singh, Philippe Doyon-Poulin
Journal of Industrial Information Integration ( IF 10.4 ) Pub Date : 2024-11-29 , DOI: 10.1016/j.jii.2024.100746 Jagmeet Singh, Amandeep Singh, Harwinder Singh, Philippe Doyon-Poulin
Production planning and control (PPC) is essential in industrial manufacturing, ensuring efficient resource allocation and process management. Industry 4.0 introduces advanced technologies like cyber physical systems (CPS), artificial intelligence (AI), and internet of things (IoT) to effectively manage and monitor manufacturing operations. However, integrating these technologies into existing machinery, particularly for small and medium-sized enterprises (SMEs), poses challenges due to complexity and cost. The present study addresses this gap by designing and implementing a Smart Machine Monitoring System (SMMS) compatible with existing machinery such as computer numerical control and special purpose machines. The SMMS integrates IoT-based systems with AI algorithms to enhance machine tool utilization through effective planning, scheduling, and real-time monitoring. Through a nine-month case study in the shackle bolt manufacturing section, it was tested and compared to an Enterprise Resource Planning (ERP)-based system to assess its performance. Results showed significant improvements in production output, machine utilization rates, labor efficiency, and overall manufacturing costs. In conclusion, this study contributes to the body of knowledge on practical Industry 4.0 implementations for SMEs, offering insights into cost-effective solutions for enhancing operational efficiency and resource utilization in manufacturing environments.
中文翻译:
工业 4.0 概念下智能机器监控系统的实施和评估
生产规划和控制 (PPC) 在工业制造中至关重要,可确保高效的资源分配和流程管理。工业 4.0 引入了信息物理系统 (CPS)、人工智能 (AI) 和物联网 (IoT) 等先进技术,以有效管理和监控制造运营。然而,由于复杂性和成本,将这些技术集成到现有机器中,特别是对于中小型企业 (SME) 来说,会带来挑战。本研究通过设计和实施与现有机械(如计算机数控和专用机器)兼容的智能机器监控系统 (SMMS) 来解决这一差距。SMMS 将基于 IoT 的系统与 AI 算法集成,通过有效的规划、调度和实时监控来提高机床利用率。通过在卸扣螺栓制造部分进行为期 9 个月的案例研究,对其进行了测试,并与基于企业资源规划 (ERP) 的系统进行了比较,以评估其性能。结果显示,产量、机器利用率、劳动效率和总体制造成本都有显著提高。总之,本研究有助于为中小企业实际实施工业 4.0 的知识体系,为提高制造环境中的运营效率和资源利用率的具有成本效益的解决方案提供见解。
更新日期:2024-11-29
中文翻译:
工业 4.0 概念下智能机器监控系统的实施和评估
生产规划和控制 (PPC) 在工业制造中至关重要,可确保高效的资源分配和流程管理。工业 4.0 引入了信息物理系统 (CPS)、人工智能 (AI) 和物联网 (IoT) 等先进技术,以有效管理和监控制造运营。然而,由于复杂性和成本,将这些技术集成到现有机器中,特别是对于中小型企业 (SME) 来说,会带来挑战。本研究通过设计和实施与现有机械(如计算机数控和专用机器)兼容的智能机器监控系统 (SMMS) 来解决这一差距。SMMS 将基于 IoT 的系统与 AI 算法集成,通过有效的规划、调度和实时监控来提高机床利用率。通过在卸扣螺栓制造部分进行为期 9 个月的案例研究,对其进行了测试,并与基于企业资源规划 (ERP) 的系统进行了比较,以评估其性能。结果显示,产量、机器利用率、劳动效率和总体制造成本都有显著提高。总之,本研究有助于为中小企业实际实施工业 4.0 的知识体系,为提高制造环境中的运营效率和资源利用率的具有成本效益的解决方案提供见解。