当前位置: X-MOL 学术Remote Sens. Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
LiDAR-derived Lorenz-entropy metric for vertical structural complexity: A comparative study of tropical dry and moist forests
Remote Sensing of Environment ( IF 11.1 ) Pub Date : 2024-12-06 , DOI: 10.1016/j.rse.2024.114545
Nooshin Mashhadi, Arturo Sanchez-Azofeifa, Ruben Valbuena

This study introduces an Entropy-based index: the Lorenz-entropy (LE) index, which we have developed by integrating Light Detection And Ranging (LiDAR), econometrics, and forest ecology. The main goal of the LE is to bridge the gap between theoretical entropy concepts and their practical applications in monitoring vertical structural complexity of tropical forest ecosystems. The LE index quantifies entropy by analyzing Relative Height (RH) metrics (representing a one-dimensional (1D) canopy structure metric) distributions from full-waveform LiDAR across successional stages in a tropical dry forest (TDF) and a tropical rainforest. To validate the LE trends derived from LiDAR, we extended the analysis using inventory-based two-dimensional (2D) and three-dimensional (3D) metrics, specifically basal area and biomass. The consistency of trends between the 1D LiDAR-derived LE and the inventory-based 2D and 3D metrics reinforces the LE's ability to capture and monitor structural complexity reliably across different measurement dimensions.

中文翻译:


LiDAR 衍生的垂直结构复杂性的 Lorenz 熵度量:热带干燥和潮湿森林的比较研究



本研究引入了一个基于熵的指数:洛伦茨熵 (LE) 指数,这是我们通过整合光探测和测距 (LiDAR)、计量经济学和森林生态学开发的。LE 的主要目标是弥合理论熵概念与其在监测热带森林生态系统垂直结构复杂性方面的实际应用之间的差距。LE 指数通过分析热带干旱森林 (TDF) 和热带雨林中全波形 LiDAR 在演替阶段的相对高度 (RH) 指标(表示一维 (1D) 冠层结构指标)分布来量化熵。为了验证来自 LiDAR 的 LE 趋势,我们使用基于库存的二维 (2D) 和三维 (3D) 指标扩展了分析,特别是基础面积和生物量。1D LiDAR 衍生的 LE 与基于库存的 2D 和 3D 指标之间的趋势一致性增强了 LE 在不同测量维度上可靠地捕获和监测结构复杂性的能力。
更新日期:2024-12-06
down
wechat
bug