当前位置: X-MOL 学术Cancer Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
spatialGE is a User-Friendly Web Application that Facilitates Spatial Transcriptomics Data Analysis
Cancer Research ( IF 12.5 ) Pub Date : 2024-12-05 , DOI: 10.1158/0008-5472.can-24-2346
Oscar E. Ospina, Roberto Manjarres-Betancur, Guillermo Gonzalez-Calderon, Alex C. Soupir, Inna Smalley, Kenneth Y. Tsai, Joseph Markowitz, Ethan Vallebuona, Anders E. Berglund, Steven A. Eschrich, Xiaoqing Yu, Brooke L. Fridley

Spatial transcriptomics (ST) is a powerful tool for understanding tissue biology and disease mechanisms. However, the advanced data analysis and programming skills required can hinder researchers from realizing of the full potential of ST. To address this, we developed spatialGE, a web application that simplifies the analysis of ST data. The application spatialGE provided a user-friendly interface that guides users without programming expertise through various analysis pipelines, including quality control, normalization, domain detection, phenotyping, and multiple spatial analyses. It also enabled comparative analysis among samples and supported various ST technologies. The utility of spatialGE was demonstrated through its application in studying the tumor microenvironment of two data sets: 10X Visium samples from a cohort of melanoma metastasis and Nanostring CosMx fields of vision from a cohort of Merkel cell carcinoma samples. These results support the ability of spatialGE to identify spatial gene expression patterns that provide valuable insights into the tumor microenvironment and highlight its utility in democratizing ST data analysis for the wider scientific community.

中文翻译:


spatialGE 是一个用户友好的 Web 应用程序,可促进空间转录组学数据分析



空间转录组学 (ST) 是了解组织生物学和疾病机制的强大工具。然而,所需的高级数据分析和编程技能可能会阻碍研究人员充分发挥意法半导体的潜力。为了解决这个问题,我们开发了 spatialGE,这是一个简化 ST 数据分析的 Web 应用程序。应用程序 spatialGE 提供了一个用户友好的界面,可以指导用户完成各种分析管道,包括质量控制、归一化、域检测、表型分析和多空间分析,而无需编程专业知识。它还支持样品之间的比较分析,并支持各种 ST 技术。spatialGE 的效用通过其在研究两个数据集的肿瘤微环境中的应用得到证明:来自一组黑色素瘤转移的 10X Visium 样本和来自一组默克尔细胞癌样本的 Nanostring CosMx 视野。这些结果支持 spatialGE 识别空间基因表达模式的能力,这些模式为肿瘤微环境提供了有价值的见解,并突出了其在为更广泛的科学界普及 ST 数据分析方面的实用性。
更新日期:2024-12-05
down
wechat
bug