当前位置:
X-MOL 学术
›
Alzheimers Dement.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A multi‐view learning approach with diffusion model to synthesize FDG PET from MRI T1WI for diagnosis of Alzheimer's disease
Alzheimer's & Dementia ( IF 13.0 ) Pub Date : 2024-12-06 , DOI: 10.1002/alz.14421 Ke Chen, Ying Weng, Yueqin Huang, Yiming Zhang, Tom Dening, Akram A. Hosseini, Weizhong Xiao
Alzheimer's & Dementia ( IF 13.0 ) Pub Date : 2024-12-06 , DOI: 10.1002/alz.14421 Ke Chen, Ying Weng, Yueqin Huang, Yiming Zhang, Tom Dening, Akram A. Hosseini, Weizhong Xiao
INTRODUCTIONThis study presents a novel multi‐view learning approach for machine learning (ML)–based Alzheimer's disease (AD) diagnosis.METHODSA diffusion model is proposed to synthesize the fluorodeoxyglucose positron emission tomography (FDG PET) view from the magnetic resonance imaging T1 weighted imaging (MRI T1WI) view and incorporate two synthesis strategies: one‐way synthesis and two‐way synthesis. To assess the utility of the synthesized views, we use multilayer perceptron (MLP)–based classifiers with various combinations of the views.RESULTSThe two‐way synthesis achieves state‐of‐the‐art performance with a structural similarity index measure (SSIM) at 0.9380 and a peak‐signal‐to‐noise ratio (PSNR) at 26.47. The one‐way synthesis achieves an SSIM at 0.9282 and a PSNR at 23.83. Both synthesized FDG PET views have shown their effectiveness in improving diagnostic accuracy.DISCUSSIONThis work supports the notion that ML‐based cross‐domain data synthesis can be a useful approach to improve AD diagnosis by providing additional synthesized disease‐related views for multi‐view learning.Highlights We propose a diffusion model with two strategies to synthesize fluorodeoxyglucose positron emission tomography (FDG PET) from magnetic resonance imaging T1 weighted imaging (MRI T1WI). We raise multi‐view learning with MRl T1Wl and synthesized FDG PET for Alzheimer's disease (AD) diagnosis. We provide a comprehensive experimental comparison for the synthesized FDG PET view. The feasibility of synthesized FDG PET view in AD diagnosis is validated with various experiments. We demonstrate the ability of synthesized FDG PET to enhance the performance of machine learning–based AD diagnosis.
中文翻译:
一种带有扩散模型的多视图学习方法,从 MRI T1WI 合成 FDG PET 用于诊断阿尔茨海默病
引言这项研究为基于机器学习 (ML) 的阿尔茨海默病 (AD) 诊断提供了一种新颖的多视图学习方法。方法提出了一种扩散模型,从磁共振成像 T1 加权成像 (MRI T1WI) 视图合成氟脱氧葡萄糖正电子发射断层扫描 (FDG PET) 视图,并结合了两种合成策略:单向合成和双向合成。为了评估合成视图的效用,我们使用基于多层感知器 (MLP) 的分类器以及各种视图组合。结果双向合成实现了最先进的性能,结构相似性指数测量 (SSIM) 为 0.9380,峰信噪比 (PSNR) 为 26.47。单向合成的 SSIM 为 0.9282,PSNR 为 23.83。两种合成的 FDG PET 视图都显示了它们在提高诊断准确性方面的有效性。讨论这项工作支持这样一种观点,即基于 ML 的跨域数据合成可以通过为多视图学习提供额外的综合疾病相关视图来改进 AD 诊断。亮点: 我们提出了一个扩散模型,其中包含两种策略,从磁共振成像 T1 加权成像 (MRI T1WI) 合成氟脱氧葡萄糖正电子发射断层扫描 (FDG PET)。我们使用 MRl T1Wl 和合成的 FDG PET 提高多视图学习用于阿尔茨海默病 (AD) 诊断。我们为合成的 FDG PET 视图提供了全面的实验比较。通过各种实验验证了合成 FDG PET 视图在 AD 诊断中的可行性。我们证明了合成的 FDG PET 能够增强基于机器学习的 AD 诊断的性能。
更新日期:2024-12-06
中文翻译:
一种带有扩散模型的多视图学习方法,从 MRI T1WI 合成 FDG PET 用于诊断阿尔茨海默病
引言这项研究为基于机器学习 (ML) 的阿尔茨海默病 (AD) 诊断提供了一种新颖的多视图学习方法。方法提出了一种扩散模型,从磁共振成像 T1 加权成像 (MRI T1WI) 视图合成氟脱氧葡萄糖正电子发射断层扫描 (FDG PET) 视图,并结合了两种合成策略:单向合成和双向合成。为了评估合成视图的效用,我们使用基于多层感知器 (MLP) 的分类器以及各种视图组合。结果双向合成实现了最先进的性能,结构相似性指数测量 (SSIM) 为 0.9380,峰信噪比 (PSNR) 为 26.47。单向合成的 SSIM 为 0.9282,PSNR 为 23.83。两种合成的 FDG PET 视图都显示了它们在提高诊断准确性方面的有效性。讨论这项工作支持这样一种观点,即基于 ML 的跨域数据合成可以通过为多视图学习提供额外的综合疾病相关视图来改进 AD 诊断。亮点: 我们提出了一个扩散模型,其中包含两种策略,从磁共振成像 T1 加权成像 (MRI T1WI) 合成氟脱氧葡萄糖正电子发射断层扫描 (FDG PET)。我们使用 MRl T1Wl 和合成的 FDG PET 提高多视图学习用于阿尔茨海默病 (AD) 诊断。我们为合成的 FDG PET 视图提供了全面的实验比较。通过各种实验验证了合成 FDG PET 视图在 AD 诊断中的可行性。我们证明了合成的 FDG PET 能够增强基于机器学习的 AD 诊断的性能。