当前位置: X-MOL 学术J. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Glutamate Signaling and Neuroligin/Neurexin Adhesion Play Opposing Roles That Are Mediated by Major Histocompatibility Complex I Molecules in Cortical Synapse Formation
Journal of Neuroscience ( IF 4.4 ) Pub Date : 2024-12-04 , DOI: 10.1523/jneurosci.0797-24.2024
Gabrielle L. Sell, Stephanie L. Barrow, A. Kimberley McAllister

Although neurons release neurotransmitter before contact, the role for this release in synapse formation remains unclear. Cortical synapses do not require synaptic vesicle release for formation (Verhage et al., 2000; Sando et al., 2017; Sigler et al., 2017; Held et al., 2020), yet glutamate clearly regulates glutamate receptor trafficking (Roche et al., 2001; Nong et al., 2004) and induces spine formation (Engert and Bonhoeffer, 1999; Maletic-Savatic et al., 1999; Toni et al., 1999; Kwon and Sabatini, 2011; Oh et al., 2016). Using rat and murine culture systems to dissect molecular mechanisms, we found that glutamate rapidly decreases synapse density specifically in young cortical neurons in a local and calcium-dependent manner through decreasing N-methyl-d-aspartate receptor (NMDAR) transport and surface expression as well as cotransport with neuroligin (NL1). Adhesion between NL1 and neurexin 1 protects against this glutamate-induced synapse loss. Major histocompatibility I (MHCI) molecules are required for the effects of glutamate in causing synapse loss through negatively regulating NL1 levels in both sexes. Thus, like acetylcholine at the neuromuscular junction, glutamate acts as a dispersal signal for NMDARs and causes rapid synapse loss unless opposed by NL1-mediated trans-synaptic adhesion. Together, glutamate, MHCI, and NL1 mediate a novel form of homeostatic plasticity in young neurons that induces rapid changes in NMDARs to regulate when and where nascent glutamatergic synapses are formed.



中文翻译:


谷氨酸信号转导和 Neuroligin/Neurexin 粘附在皮质突触形成中由主要组织相容性复合物 I 分子介导的相反作用



尽管神经元在接触前会释放神经递质,但这种释放在突触形成中的作用仍不清楚。皮质突触不需要突触小泡释放即可形成(Verhage等人,2000 年;Sando等人,2017 年;Sigler等人,2017 年;Held等人,2020 年),但谷氨酸显然调节谷氨酸受体的运输(Roche 等人,2001 年;Nong et al., 2004) 并诱导脊柱形成 (Engert and Bonhoeffer, 1999;Maletic-Savatic et al., 1999;Toni 等人,1999 年;Kwon 和 Sabatini,2011 年;Oh et al., 2016)。使用大鼠和小鼠培养系统剖析分子机制,我们发现谷氨酸通过减少 N-甲基-d-天冬氨酸受体 (NMDAR) 转运和表面表达以及与神经连接蛋白 (NL1) 的共转运,以局部和钙依赖性方式迅速降低年轻皮层神经元中的突触密度。NL1 和 neurexin 1 之间的粘附可防止这种谷氨酸诱导的突触丢失。主要组织相容性 I (MHCI) 分子是谷氨酸通过负向调节两性 NL1 水平导致突触丢失的作用所必需的。因此,与神经肌肉接头处的乙酰胆碱一样,谷氨酸充当 NMDAR 的分散信号,除非受到 NL1 介导的跨突触粘附的反对,否则会导致突触快速丢失。谷氨酸、MHCI 和 NL1 共同介导年轻神经元中一种新型的稳态可塑性,诱导 NMDAR 的快速变化,以调节新生谷氨酸能突触的形成时间和位置。

更新日期:2024-12-05
down
wechat
bug