当前位置: X-MOL 学术Clin. Cancer Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Society for Immunotherapy of Cancer Perspective on Tissue-Based Technologies for Immuno-Oncology Biomarker Discovery and Application
Clinical Cancer Research ( IF 10.0 ) Pub Date : 2024-12-03 , DOI: 10.1158/1078-0432.ccr-24-2469
Anne Monette, Adriana Aguilar-Mahecha, Emre Altinmakas, Mathew G. Angelos, Nima Assad, Gerald Batist, Praveen K. Bommareddy, Diana L. Bonilla, Christoph H. Borchers, Sarah E. Church, Gennaro Ciliberto, Alexandria P. Cogdill, Luigi Fattore, Nir Hacohen, Mohammad Haris, Vincent Lacasse, Wen-Rong Lie, Arnav Mehta, Marco Ruella, Houssein Abdul. Sater, Alan Spatz, Bachir Taouli, Imad Tarhoni, Edgar Gonzalez-Kozlova, Itay Tirosh, Xiaodong Wang, Sacha Gnjatic

With immuno-oncology becoming the standard of care for a variety of cancers, identifying biomarkers that reliably classify patient response, resistance, or toxicity becomes the next critical barrier towards improving care. Multi-parametric, multi-omics, and computational platforms generating an unprecedented depth of data are poised to usher in the discovery of increasingly robust biomarkers for enhanced patient selection and personalized treatment approaches. Deciding which developing technologies to implement in clinical settings ultimately, applied either alone or in combination, relies on weighing pros and cons, from minimizing patient sampling to maximizing data outputs, and assessing reproducibility and representativeness of findings, while lessening data fragmentation towards harmonization. These factors are all assessed while taking into consideration the shortest turnaround time. The Society for Immunotherapy of Cancer (SITC) Biomarkers Committee convened to identify important advances in biomarker technologies and to address advances in biomarker discovery using multiplexed immunohistochemistry and immunofluorescence, their coupling to single cell transcriptomics, along with mass spectrometry-based quantitative and spatially resolved proteomics imaging technologies. We summarize key metrics obtained, ease of interpretation, limitations and dependencies, technical improvements, and outward comparisons of these technologies. By highlighting the most interesting recent data contributed by these technologies, and by providing ways to improve their outputs, we hope to guide correlative research directions and assist in their evolution towards becoming clinically useful in IO.

中文翻译:


癌症免疫治疗学会对基于组织的免疫肿瘤生物标志物发现和应用技术的看法



随着免疫肿瘤学成为各种癌症的护理标准,识别可靠地对患者反应、耐药性或毒性进行分类的生物标志物成为改善护理的下一个关键障碍。多参数、多组学和计算平台生成前所未有的数据深度,有望发现越来越强大的生物标志物,以增强患者选择和个性化治疗方法。决定最终在临床环境中实施哪些开发中的技术,无论是单独应用还是组合应用,都依赖于权衡利弊,从最大限度地减少患者采样到最大化数据输出,以及评估结果的可重复性和代表性,同时减少数据碎片化以实现协调。这些因素都是在考虑最短周转时间的同时进行评估的。癌症免疫治疗学会 (SITC) 生物标志物委员会召开会议,以确定生物标志物技术的重要进展,并解决使用多重免疫组织化学和免疫荧光发现生物标志物的进展,它们与单细胞转录组学的耦合,以及基于质谱的定量和空间分辨蛋白质组学成像技术。我们总结了获得的关键指标、易于解释、限制和依赖关系、技术改进以及这些技术的外部比较。通过强调这些技术贡献的最有趣的最新数据,并提供提高其输出的方法,我们希望指导相关的研究方向,并协助它们朝着在 IO 中临床有用的方向发展。
更新日期:2024-12-03
down
wechat
bug