当前位置:
X-MOL 学术
›
Plant Biotech. J.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Past innovations and future possibilities in plant chromosome engineering
Plant Biotechnology Journal ( IF 10.1 ) Pub Date : 2024-11-29 , DOI: 10.1111/pbi.14530 Yang Liu, Qian Liu, Congyang Yi, Chang Liu, Qinghua Shi, Mian Wang, Fangpu Han
Plant Biotechnology Journal ( IF 10.1 ) Pub Date : 2024-11-29 , DOI: 10.1111/pbi.14530 Yang Liu, Qian Liu, Congyang Yi, Chang Liu, Qinghua Shi, Mian Wang, Fangpu Han
SummaryPlant chromosome engineering has emerged as a pivotal tool in modern plant breeding, facilitating the transfer of desirable traits through the incorporation of alien chromosome fragments into plants. Here, we provide a comprehensive overview of the past achievements, current methodologies and future prospects of plant chromosome engineering. We begin by examining the successful integration of specific examples such as the incorporation of rye chromosome segments (e.g. the 1BL/1RS translocation), Dasypyrum villosum segments (e.g. the 6VS segment for powdery mildew resistance), Thinopyrum intermedium segments (e.g. rust resistance genes) and Thinopyrum elongatum segments (e.g. Fusarium head blight resistance genes). In addition to trait transfer, advancements in plant centromere engineering have opened new possibilities for chromosomal manipulation. This includes the development of plant minichromosomes via centromere‐mediated techniques, the generation of haploids through CENH3 gene editing, and the induction of aneuploidy using KaryoCreate. The advent of CRISPR/Cas technology has further revolutionized chromosome engineering, enabling large‐scale chromosomal rearrangements, such as inversions and translocations, as well as enabling targeted insertion of large DNA fragments and increasing genetic recombination frequency. These advancements have significantly expanded the toolkit for genetic improvement in plants, opening new horizons for the future of plant breeding.
中文翻译:
植物染色体工程的过去创新和未来可能性
摘要植物染色体工程已成为现代植物育种的关键工具,通过将外源染色体片段掺入植物中来促进理想性状的转移。在这里,我们全面概述了植物染色体工程的过去成就、当前方法和未来前景。我们首先研究了具体例子的成功整合,例如黑麦染色体片段的掺入(例如 1BL/1RS 易位)、Dasypyrum villosum 片段(例如抗白粉病的 6VS 片段)、Thinopyrum 中间片段(例如抗锈基因)和 Thinopyrum elongatum 片段(例如镰刀菌头枯病抗性基因)。除了性状转移之外,植物着丝粒工程的进步还为染色体操作开辟了新的可能性。这包括通过着丝粒介导的技术开发植物小染色体,通过 CENH3 基因编辑产生单倍体,以及使用 KaryoCreate 诱导非整倍体。CRISPR/Cas 技术的出现进一步彻底改变了染色体工程,实现了大规模的染色体重排,例如倒位和易位,以及实现大 DNA 片段的靶向插入和增加基因重组频率。这些进步显著扩展了植物遗传改良的工具包,为植物育种的未来开辟了新的视野。
更新日期:2024-11-29
中文翻译:
植物染色体工程的过去创新和未来可能性
摘要植物染色体工程已成为现代植物育种的关键工具,通过将外源染色体片段掺入植物中来促进理想性状的转移。在这里,我们全面概述了植物染色体工程的过去成就、当前方法和未来前景。我们首先研究了具体例子的成功整合,例如黑麦染色体片段的掺入(例如 1BL/1RS 易位)、Dasypyrum villosum 片段(例如抗白粉病的 6VS 片段)、Thinopyrum 中间片段(例如抗锈基因)和 Thinopyrum elongatum 片段(例如镰刀菌头枯病抗性基因)。除了性状转移之外,植物着丝粒工程的进步还为染色体操作开辟了新的可能性。这包括通过着丝粒介导的技术开发植物小染色体,通过 CENH3 基因编辑产生单倍体,以及使用 KaryoCreate 诱导非整倍体。CRISPR/Cas 技术的出现进一步彻底改变了染色体工程,实现了大规模的染色体重排,例如倒位和易位,以及实现大 DNA 片段的靶向插入和增加基因重组频率。这些进步显著扩展了植物遗传改良的工具包,为植物育种的未来开辟了新的视野。