当前位置:
X-MOL 学术
›
Environ. Sci.: Nano
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Impact of different soil solutions on the stability and photocatalytic activity of commercial zinc oxide nanoparticles
Environmental Science: Nano ( IF 5.8 ) Pub Date : 2024-11-26 , DOI: 10.1039/d4en00354c Karolina Solymos, Eszter Kanász, Áron Ágoston, Tamás Gyulavári, Benjámin Pálffy, Ákos Szamosvölgyi, Ákos Kukovecz, Zoltán Kónya, Zsolt Pap
Environmental Science: Nano ( IF 5.8 ) Pub Date : 2024-11-26 , DOI: 10.1039/d4en00354c Karolina Solymos, Eszter Kanász, Áron Ágoston, Tamás Gyulavári, Benjámin Pálffy, Ákos Szamosvölgyi, Ákos Kukovecz, Zoltán Kónya, Zsolt Pap
Zinc oxide (ZnO) nanoparticles are extensively utilized across various industries due to their versatile applications. However, the widespread use of these nanoparticles raises concerns regarding their potential release into soil environments, and also into the soil solution. Therefore, this study aims to delve into the interplay between different soil solution properties and the stability as well as photocatalytic activity of commercially available ZnO nanoparticles. It is observed that these interactions precipitate a reduction in the primary crystallite sizes of ZnO, primarily attributed to the release of Zn2+ ions under acidic conditions, and the formation of zinc complexes or hydroxides in alkaline environments. In acidic media, there is a concomitant decrease in the hydrodynamic diameter of ZnO, serving as further confirmation of Zn2+ release, which is corroborated by analytical measurements. Conversely, in alkaline media, the hydrodynamic diameter remains unaltered, suggesting the formation of an amorphous layer on the nanoparticle surface in such conditions. Further analyses into the surface chemistry of ZnO nanoparticles reveal the adsorption of various organic substances onto their surfaces. These organic compounds potentially function as electron traps or occupy active sites, however, after the interaction with soil solutions, the material was still able to degrade the model pollutant. So, the interaction with soil solutions reduced the activity, but the catalyst retained its efficiency. In essence, this study underscores the importance of comprehensively understanding the behavior of ZnO nanoparticles in soil environments. Such insights are pivotal for informed decision-making regarding the sustainable utilization of ZnO nanoparticles across various industrial domains.
中文翻译:
不同土壤溶液对商用氧化锌纳米颗粒稳定性和光催化活性的影响
氧化锌 (ZnO) 纳米颗粒因其用途广泛而被广泛用于各个行业。然而,这些纳米颗粒的广泛使用引发了人们对它们可能释放到土壤环境以及土壤溶液中的担忧。因此,本研究旨在深入研究不同土壤溶液特性与市售 ZnO 纳米颗粒的稳定性和光催化活性之间的相互作用。据观察,这些相互作用导致 ZnO 初级晶粒尺寸的减小,这主要归因于在酸性条件下 Zn2+ 离子的释放,以及在碱性环境中形成锌络合物或氢氧化物。在酸性介质中,ZnO 的流体动力学直径随之减小,进一步证实了 Zn2+ 的释放,这得到了分析测量的证实。相反,在碱性介质中,流体动力学直径保持不变,表明在这种情况下在纳米颗粒表面形成非晶层。对 ZnO 纳米颗粒表面化学的进一步分析揭示了各种有机物质对其表面的吸附。这些有机化合物可能起到电子陷阱的作用或占据活性位点,但是,在与土壤溶液相互作用后,该材料仍然能够降解模型污染物。因此,与土壤溶液的相互作用降低了活性,但催化剂保持了其效率。从本质上讲,这项研究强调了全面了解 ZnO 纳米颗粒在土壤环境中行为的重要性。 这些见解对于就 ZnO 纳米颗粒在各个工业领域的可持续利用做出明智的决策至关重要。
更新日期:2024-11-29
中文翻译:
不同土壤溶液对商用氧化锌纳米颗粒稳定性和光催化活性的影响
氧化锌 (ZnO) 纳米颗粒因其用途广泛而被广泛用于各个行业。然而,这些纳米颗粒的广泛使用引发了人们对它们可能释放到土壤环境以及土壤溶液中的担忧。因此,本研究旨在深入研究不同土壤溶液特性与市售 ZnO 纳米颗粒的稳定性和光催化活性之间的相互作用。据观察,这些相互作用导致 ZnO 初级晶粒尺寸的减小,这主要归因于在酸性条件下 Zn2+ 离子的释放,以及在碱性环境中形成锌络合物或氢氧化物。在酸性介质中,ZnO 的流体动力学直径随之减小,进一步证实了 Zn2+ 的释放,这得到了分析测量的证实。相反,在碱性介质中,流体动力学直径保持不变,表明在这种情况下在纳米颗粒表面形成非晶层。对 ZnO 纳米颗粒表面化学的进一步分析揭示了各种有机物质对其表面的吸附。这些有机化合物可能起到电子陷阱的作用或占据活性位点,但是,在与土壤溶液相互作用后,该材料仍然能够降解模型污染物。因此,与土壤溶液的相互作用降低了活性,但催化剂保持了其效率。从本质上讲,这项研究强调了全面了解 ZnO 纳米颗粒在土壤环境中行为的重要性。 这些见解对于就 ZnO 纳米颗粒在各个工业领域的可持续利用做出明智的决策至关重要。