当前位置: X-MOL 学术Biomass Bioenergy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Studying Gaussian deconvolution and multicomponent kinetics models in Agave cellulosic fibers pyrolysis: Application in sustainable bioenergy for cleaner production
Biomass & Bioenergy ( IF 5.8 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.biombioe.2024.107488
Imen Lalaymia, Ahmed Belaadi, Djamel Ghernaout

This study investigates the behavior of heat and pyrolytic kinetics of flower stalks of Agave americana (FSAA) fibers, focusing on their potential for bioenergy production through pyrolytic conversion. Thermogravimetric analysis reveals distinct stages of thermal degradation influenced by varying heating rates (β), demonstrating accelerated volatilization and altered decomposition temperatures with increased β. Deconvolution kinetic analysis using Gaussian functions delineates unique decomposition ranges for pseudo hemicellulose, cellulose, and lignin within FSAA, offering insights into their thermal stability and decomposition pathways. Kinetic parameters derived from multiple models highlight significant differences in activation energies and reaction frequencies across biomass components, underscoring the complexity of their thermal decomposition kinetics. Thermodynamic analysis elucidates varying energy requirements and spontaneity in decomposition processes, which is crucial for optimizing bioenergy yield. Results indicate that higher β leads to enhanced pyrolysis efficiency, with peak temperatures for maximum weight loss shifting significantly upwards. Specifically, activation energies for pseudo hemicellulose range from 22.269 to 116.089 kJ/mol, while those for cellulose and lignin vary from 72.070 to 101.916 kJ/mol and 68.678–105.031 kJ/mol, respectively. This comprehensive analysis contributes novel insights into optimizing pyrolysis processes for FSAA fibers, advancing their application in sustainable bioenergy technologies.

中文翻译:


研究龙舌兰纤维素纤维热解中的高斯反卷积和多组分动力学模型:在可持续生物能源中实现清洁生产的应用



本研究调查了美洲龙舌兰 (FSAA) 纤维花茎的热行为和热解动力学,重点关注它们通过热解转化产生生物能源的潜力。热重分析揭示了受不同加热速率 (β) 影响的热降解的不同阶段,表明随着β的增加,挥发加速和分解温度改变。使用高斯函数的反卷积动力学分析描绘了 FSAA 中假半纤维素、纤维素和木质素的独特分解范围,从而深入了解它们的热稳定性和分解途径。从多个模型得出的动力学参数突出了生物质组分之间活化能和反应频率的显着差异,强调了其热分解动力学的复杂性。热力学分析阐明了分解过程中不同的能量需求和自发性,这对于优化生物能源产量至关重要。结果表明,较高的β导致热解效率提高,最大失重的峰值温度显着上升。具体来说,假半纤维素的活化能范围为 22.269 至 116.089 kJ/mol,而纤维素和木质素的活化能分别为 72.070 至 101.916 kJ/mol 和 68.678–105.031 kJ/mol。这项全面的分析为优化 FSAA 纤维的热解过程提供了新的见解,从而推进了它们在可持续生物能源技术中的应用。
更新日期:2024-11-19
down
wechat
bug