当前位置:
X-MOL 学术
›
Soil Biol. Biochem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hyphosphere core taxa link plant-arbuscular mycorrhizal fungi combinations to soil organic phosphorus mineralization
Soil Biology and Biochemistry ( IF 9.8 ) Pub Date : 2024-11-20 , DOI: 10.1016/j.soilbio.2024.109647 Letian Wang, Lin Zhang, Timothy S. George, Gu Feng
Soil Biology and Biochemistry ( IF 9.8 ) Pub Date : 2024-11-20 , DOI: 10.1016/j.soilbio.2024.109647 Letian Wang, Lin Zhang, Timothy S. George, Gu Feng
Arbuscular mycorrhizal (AM) fungi acquire photosynthetically fixed carbon (C) from host plants and transport some of it to hyphosphere bacteria via an extensive extraradical hyphal network. The hyphosphere microbiome, fostered by hyphal exudates, is crucial for AM fungi to access soil organic phosphorus (Po) and enhance plant growth, but the impact of plant-AM fungal combinations is still not well-elucidated. To answer this question, we selected two plant species with differing photosynthetic efficiency, medic (a C3 plant) and maize (a C4 plant), along with four AM fungal species, and successfully established various plant-AM fungal combinations. We examined the growth of plants and AM fungi, the mineralization process of soil Po, and the absolute quantity, community composition, and metabolic preferences of the hyphosphere microbiome.Maize-AM fungi combinations exhibited greater abilities to increase soil phosphatase activity and promote Po mineralization compared to medic-AM fungi combinations. This was related to substantial disparities in the hyphosphere core microbiome between maize and medic. Massilia, a pivotal member of the core microbiome and a keystone taxon within the hyphosphere network, showed a notably greater relative abundance in maize-AM fungal systems than in the medic treatment. Thirteen core bacterial strains isolated from the hyphosphere showed a universal ability to secrete phosphatase, with Massilia being the most proficient. Additionally, community level physiological profiles showed that the maize-associated hyphosphere microbiomes had a heightened capacity for metabolizing fructose and glucose, key components of hyphal exudates.Our study demonstrates that different combinations of plants and AM fungal species modulate the relative abundance of the core taxon through hyphal exudates, thus influencing the functionality of hyphosphere microbiomes for Po mineralization in the phytate-enriched soil. This provides novel insights into AM symbiosis for nutrient cycling and underscores the potential of tailored plant-fungal pairings in improving agricultural nutrient management and soil health.
中文翻译:
Hyphosphere 核心分类群将植物-丛枝菌根真菌组合与土壤有机磷矿化联系起来
丛枝菌根 (AM) 真菌从寄主植物获取光合作用固定碳 (C),并通过广泛的根外菌丝网络将其中的一部分运输到菌圈细菌。由菌丝分泌物培养的菌圈微生物组对于 AM 真菌获取土壤有机磷 (Po) 和促进植物生长至关重要,但植物-AM 真菌组合的影响仍未得到充分阐明。为了回答这个问题,我们选择了两种光合效率不同的植物物种,medic (一种 C3 植物) 和玉米 (一种 C4 植物),以及四种 AM 真菌物种,并成功建立了各种植物-AM 真菌组合。我们检查了植物和 AM 真菌的生长、土壤 Po 的矿化过程以及菌圈微生物组的绝对数量、群落组成和代谢偏好。与 medic-AM 真菌组合相比,玉米-AM 真菌组合表现出更强的提高土壤磷酸酶活性和促进 Po 矿化的能力。这与玉米和 medic 之间 hyphosphere 核心微生物组的巨大差异有关。Massilia 是核心微生物组的关键成员和菌圈网络中的关键分类群,在玉米-AM 真菌系统中显示出明显高于药物处理的相对丰度。从菌圈分离的 13 种核心细菌菌株显示出普遍的磷酸酶分泌能力,其中 Massilia 最熟练。此外,群落水平的生理特征表明,玉米相关的菌丝圈微生物组具有更高的代谢菌丝分泌物关键成分果糖和葡萄糖的能力。我们的研究表明,植物和 AM 真菌物种的不同组合通过菌丝分泌物调节核心分类群的相对丰度,从而影响富含植酸盐的土壤中 Po 矿化的菌圈微生物组的功能。这为增材制造养分循环的共生关系提供了新的见解,并强调了量身定制的植物-真菌配对在改善农业养分管理和土壤健康方面的潜力。
更新日期:2024-11-20
中文翻译:
Hyphosphere 核心分类群将植物-丛枝菌根真菌组合与土壤有机磷矿化联系起来
丛枝菌根 (AM) 真菌从寄主植物获取光合作用固定碳 (C),并通过广泛的根外菌丝网络将其中的一部分运输到菌圈细菌。由菌丝分泌物培养的菌圈微生物组对于 AM 真菌获取土壤有机磷 (Po) 和促进植物生长至关重要,但植物-AM 真菌组合的影响仍未得到充分阐明。为了回答这个问题,我们选择了两种光合效率不同的植物物种,medic (一种 C3 植物) 和玉米 (一种 C4 植物),以及四种 AM 真菌物种,并成功建立了各种植物-AM 真菌组合。我们检查了植物和 AM 真菌的生长、土壤 Po 的矿化过程以及菌圈微生物组的绝对数量、群落组成和代谢偏好。与 medic-AM 真菌组合相比,玉米-AM 真菌组合表现出更强的提高土壤磷酸酶活性和促进 Po 矿化的能力。这与玉米和 medic 之间 hyphosphere 核心微生物组的巨大差异有关。Massilia 是核心微生物组的关键成员和菌圈网络中的关键分类群,在玉米-AM 真菌系统中显示出明显高于药物处理的相对丰度。从菌圈分离的 13 种核心细菌菌株显示出普遍的磷酸酶分泌能力,其中 Massilia 最熟练。此外,群落水平的生理特征表明,玉米相关的菌丝圈微生物组具有更高的代谢菌丝分泌物关键成分果糖和葡萄糖的能力。我们的研究表明,植物和 AM 真菌物种的不同组合通过菌丝分泌物调节核心分类群的相对丰度,从而影响富含植酸盐的土壤中 Po 矿化的菌圈微生物组的功能。这为增材制造养分循环的共生关系提供了新的见解,并强调了量身定制的植物-真菌配对在改善农业养分管理和土壤健康方面的潜力。