当前位置: X-MOL 学术Nucleic Acids Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Complex portal 2025: predicted human complexes and enhanced visualisation tools for the comparison of orthologous and paralogous complexes
Nucleic Acids Research ( IF 16.6 ) Pub Date : 2024-11-19 , DOI: 10.1093/nar/gkae1085
Sucharitha Balu, Susie Huget, Juan Jose Medina Reyes, Eliot Ragueneau, Kalpana Panneerselvam, Samantha N Fischer, Erin R Claussen, Savvas Kourtis, Colin W Combe, Birgit H M Meldal, Livia Perfetto, Juri Rappsilber, Georg Kustatscher, Kevin Drew, Sandra Orchard, Henning Hermjakob

The Complex Portal (www.ebi.ac.uk/complexportal) is a manually curated reference database for molecular complexes. It is a unifying web resource linking aggregated data on composition, topology and the function of macromolecular complexes from 28 species. In addition to significantly extending the number of manually curated complexes, we have massively extended the coverage of the human complexome through the incorporation of high confidence assemblies predicted by machine-learning algorithms trained on large-scale experimental data. The current content of the portal comprising 2150 human complexes has been augmented by 14 964 machine-learning (ML) predicted complexes from hu.MAP3.0. We have refactored the website to enable easy search and filtering of these different classes of protein complexes and have implemented the Complex Navigator, a visualisation tool to facilitate comparison of related complexes in the context of orthology or paralogy. We have embedded the Rhea reaction visualisation tool into the website to enable users to view the catalytic activity of enzyme complexes.

中文翻译:


Complex portal 2025:预测人类复合物和增强的可视化工具,用于比较直系同源和旁系同源复合物



Complex Portal (www.ebi.ac.uk/complexportal) 是一个手动整理的分子复合物参考数据库。它是一个统一的网络资源,链接了来自 28 个物种的大分子复合物的组成、拓扑和功能的汇总数据。除了显著增加手动整理复合物的数量外,我们还通过纳入由大规模实验数据训练的机器学习算法预测的高置信度组装体,大大扩展了人类复合物组的覆盖范围。该门户的当前内容包括 2150 个人类复合物,已被 14 964 个来自 胡 的机器学习 (ML) 预测复合物所增强。MAP3.0. 我们重构了网站,以便能够轻松搜索和过滤这些不同类别的蛋白质复合物,并实施了 Complex Navigator,这是一种可视化工具,有助于在正交或旁系同源的背景下比较相关复合物。我们已将 Rhea 反应可视化工具嵌入到网站中,使用户能够查看酶复合物的催化活性。
更新日期:2024-11-19
down
wechat
bug