当前位置:
X-MOL 学术
›
Hydrometallurgy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Separation of hafnium from zircon leach solution using anion-exchange resin and production of high-purity zirconia for nuclear applications
Hydrometallurgy ( IF 4.8 ) Pub Date : 2024-10-16 , DOI: 10.1016/j.hydromet.2024.106411 Z.H. Ismail, S.E. Rizk, E.M. Abu Elgoud, H.F. Aly
Hydrometallurgy ( IF 4.8 ) Pub Date : 2024-10-16 , DOI: 10.1016/j.hydromet.2024.106411 Z.H. Ismail, S.E. Rizk, E.M. Abu Elgoud, H.F. Aly
The ion exchange process using an anion exchange resin (Bio-Rex 5) was employed with batch and column techniques to isolate nuclear-grade zirconium/hafnium from a leach solution of zircon ore. Batch studies were conducted to optimize the conditions for sorption and desorption of Zr(IV) and Hf(IV). The highest separation factor of 10.3 was achieved under equilibrium conditions of 11.0 mol/L HCl, contact time of 30.0 min, solution volume-to-mass of resin ratio of 0.10, and 15 °C. The sorption process for both metals obeyed a pseudo-second-order model and the experimental sorption data was well-described by both Langmuir and Freundlich models. The maximum sorption capacities were determined to be 46.2 mg/g for Zr(IV) and 37.8 mg/g for Hf(IV). The Zr(IV) and Hf(IV) ions were effectively desorbed by 0.1 mol/L nitric and 2.0 mol/L hydrochloric acid solutions, respectively, with total yields of 89.7 % Zr(IV) and 85.8 % Hf(IV) via multistage desorption processes. In both batch and column techniques, the resin exhibited sorption selectivity for Zr and Hf over interfering elements in the hydrochloric acid leach solution of zircon sand. The loaded resin from real leach solution was subjected to desorption, zirconium sulfate precipitation, and calcination at 650 °C, resulting in a pure zirconia powder suitable for nuclear applications. This technique presents a promising effective method for the selective separation and recovery of high-purity zirconium and hafnium from their natural sources.
中文翻译:
使用阴离子交换树脂从锆石浸出液中分离铪并生产用于核应用的高纯度氧化锆
使用阴离子交换树脂 (Bio-Rex 5) 的离子交换工艺与批量和柱技术结合使用,从锆石矿石的浸出溶液中分离核级锆/铪。进行批量研究以优化 Zr(IV) 和 Hf(IV) 的吸附和解吸条件。在 11.0 mol/L HCl、接触时间为 30.0 min、树脂溶液体积质量比为 0.10 和 15 °C 的平衡条件下,分离因子最高,为 10.3。 两种金属的吸附过程都遵循准二级模型,并且 Langmuir 和 Freundlich 模型都很好地描述了实验吸附数据。确定 Zr(IV) 的最大吸附容量为 46.2 mg/g,Hf(IV) 的最大吸附量为 37.8 mg/g。Zr(IV) 和 Hf(IV) 离子分别被 0.1 mol/L 硝酸和 2.0 mol/L 盐酸溶液有效解吸,通过多级解吸过程,总产率分别为 89.7% Zr(IV) 和 85.8% Hf(IV)。在间歇和塔技术中,树脂对锆石砂盐酸浸出液中干扰元素的 Zr 和 Hf 表现出吸附选择性。将来自实际浸出液的负载树脂在 650 °C 下进行解吸、硫酸锆沉淀和煅烧,得到适用于核应用的纯氧化锆粉末。该技术为从天然来源中选择性分离和回收高纯度锆和铪提供了一种有前途的有效方法。
更新日期:2024-10-16
中文翻译:
使用阴离子交换树脂从锆石浸出液中分离铪并生产用于核应用的高纯度氧化锆
使用阴离子交换树脂 (Bio-Rex 5) 的离子交换工艺与批量和柱技术结合使用,从锆石矿石的浸出溶液中分离核级锆/铪。进行批量研究以优化 Zr(IV) 和 Hf(IV) 的吸附和解吸条件。在 11.0 mol/L HCl、接触时间为 30.0 min、树脂溶液体积质量比为 0.10 和 15 °C 的平衡条件下,分离因子最高,为 10.3。 两种金属的吸附过程都遵循准二级模型,并且 Langmuir 和 Freundlich 模型都很好地描述了实验吸附数据。确定 Zr(IV) 的最大吸附容量为 46.2 mg/g,Hf(IV) 的最大吸附量为 37.8 mg/g。Zr(IV) 和 Hf(IV) 离子分别被 0.1 mol/L 硝酸和 2.0 mol/L 盐酸溶液有效解吸,通过多级解吸过程,总产率分别为 89.7% Zr(IV) 和 85.8% Hf(IV)。在间歇和塔技术中,树脂对锆石砂盐酸浸出液中干扰元素的 Zr 和 Hf 表现出吸附选择性。将来自实际浸出液的负载树脂在 650 °C 下进行解吸、硫酸锆沉淀和煅烧,得到适用于核应用的纯氧化锆粉末。该技术为从天然来源中选择性分离和回收高纯度锆和铪提供了一种有前途的有效方法。