当前位置:
X-MOL 学术
›
Energy Convers. Manag.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Thermal comfort-constrained nonlinear operational optimization of a solar-absorption-radiant cooling system
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-11-04 , DOI: 10.1016/j.enconman.2024.119204 Ahmed E. Elbakhshwan, Muhammed A. Hassan, Mahmoud A. Kassem, Mohamad T. Araji
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-11-04 , DOI: 10.1016/j.enconman.2024.119204 Ahmed E. Elbakhshwan, Muhammed A. Hassan, Mahmoud A. Kassem, Mohamad T. Araji
With the increasing demand for sustainable building solutions, especially under extreme weather conditions, there is a growing need for renewable-powered cooling systems that can minimize energy consumption and carbon emissions. Solar-absorption-radiant cooling systems offer a promising alternative to traditional air conditioning systems, but their effectiveness relies on efficient control strategies. This study investigates the optimal control of a solar-absorption-radiant cooling system for a single-story office building using non-linear programming (NLP) to minimize operating costs while maintaining thermal comfort. This is achieved by directly integrating the building model and thermal comfort calculations within the optimization procedure. By incorporating a solar collector, storage tank, assisting boiler, and absorption chiller, the system achieves a solar fraction of 0.8, minimizing daily operating costs to 2.11 USD and carbon emissions to ∼ 39.1 k g C O 2 . The system maintains an average PMV of 0.14, an operative temperature of 25.63 °C, and a coefficient of performance of 0.72. The study also explores the impact of varying thermal comfort constraints, ventilation rates, and inlet air temperatures on system performance. Stricter comfort constraints (PMV=-0.2 to 0.2) increase costs and emissions by 30.96 % and 37.5 % respectively, due to increased reliance on the natural gas boiler. Doubling the ventilation rate based on fresh outdoor air increases daily costs and emissions by 19 % and 22.6 % respectively. Conversely, utilizing a supplementary system to supply ventilation air at 25 °C significantly reduces costs and emissions by 26.2 % and 25.4 % respectively, and increases the solar fraction to 0.92. Compared to a conventional system powered solely by a natural gas boiler, the solar-powered system achieves substantial cost savings (45.9 %), reduced carbon emissions (52.5 %), and improved thermal comfort, highlighting the potential of this technology for sustainable building operations.
中文翻译:
太阳能吸收辐射冷却系统的热舒适约束非线性运行优化
随着对可持续建筑解决方案的需求不断增加,尤其是在极端天气条件下,对能够最大限度地减少能源消耗和碳排放的可再生能源冷却系统的需求也越来越大。太阳能吸收辐射冷却系统为传统空调系统提供了一种很有前途的替代方案,但其有效性取决于有效的控制策略。本研究使用非线性规划 (NLP) 调查了单层办公楼太阳能吸收辐射冷却系统的最佳控制,以最大限度地降低运营成本,同时保持热舒适性。这是通过在优化过程中直接集成建筑模型和热舒适性计算来实现的。通过结合太阳能集热器、储水箱、辅助锅炉和吸收式冷却器,该系统实现了 0.8 的太阳能分数,将日常运营成本降至 2.11 美元,将碳排放量降至 ∼ 39.1 kgCO2。该系统保持 0.14 的平均 PMV、25.63 °C 的工作温度和 0.72 的性能系数。该研究还探讨了不同的热舒适约束、通风率和进气温度对系统性能的影响。由于对天然气锅炉的依赖增加,更严格的舒适度限制(PMV=-0.2 至 0.2)的成本和排放量分别增加了 30.96% 和 37.5%。根据室外新鲜空气将通风率提高一倍,日常成本和排放量分别增加 19% 和 22.6%。相反,利用辅助系统在 25 °C 下供应通风空气,可显著降低成本和排放量,分别降低 26.2% 和 25.4%,并将太阳能分数提高到 0.92。 与仅由天然气锅炉供电的传统系统相比,太阳能系统可节省大量成本 (45.9%)、减少碳排放 (52.5%) 并提高热舒适度,凸显了该技术在可持续建筑运营方面的潜力。
更新日期:2024-11-04
中文翻译:
太阳能吸收辐射冷却系统的热舒适约束非线性运行优化
随着对可持续建筑解决方案的需求不断增加,尤其是在极端天气条件下,对能够最大限度地减少能源消耗和碳排放的可再生能源冷却系统的需求也越来越大。太阳能吸收辐射冷却系统为传统空调系统提供了一种很有前途的替代方案,但其有效性取决于有效的控制策略。本研究使用非线性规划 (NLP) 调查了单层办公楼太阳能吸收辐射冷却系统的最佳控制,以最大限度地降低运营成本,同时保持热舒适性。这是通过在优化过程中直接集成建筑模型和热舒适性计算来实现的。通过结合太阳能集热器、储水箱、辅助锅炉和吸收式冷却器,该系统实现了 0.8 的太阳能分数,将日常运营成本降至 2.11 美元,将碳排放量降至 ∼ 39.1 kgCO2。该系统保持 0.14 的平均 PMV、25.63 °C 的工作温度和 0.72 的性能系数。该研究还探讨了不同的热舒适约束、通风率和进气温度对系统性能的影响。由于对天然气锅炉的依赖增加,更严格的舒适度限制(PMV=-0.2 至 0.2)的成本和排放量分别增加了 30.96% 和 37.5%。根据室外新鲜空气将通风率提高一倍,日常成本和排放量分别增加 19% 和 22.6%。相反,利用辅助系统在 25 °C 下供应通风空气,可显著降低成本和排放量,分别降低 26.2% 和 25.4%,并将太阳能分数提高到 0.92。 与仅由天然气锅炉供电的传统系统相比,太阳能系统可节省大量成本 (45.9%)、减少碳排放 (52.5%) 并提高热舒适度,凸显了该技术在可持续建筑运营方面的潜力。