当前位置: X-MOL 学术Transp. Res. Part E Logist. Transp. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transport behavior and government interventions in pandemics: A hybrid explainable machine learning for road safety
Transportation Research Part E: Logistics and Transportation Review ( IF 8.3 ) Pub Date : 2024-10-26 , DOI: 10.1016/j.tre.2024.103841
Ismail Abdulrashid, Reza Zanjirani Farahani, Shamkhal Mammadov, Mohamed Khalafalla

During a pandemic, transportation authorities and policymakers face significant challenges in identifying and validating new travel behavior and how it affects traffic crash patterns to develop effective safety strategies. A timely assessment of an emergency incident’s long-term impact and the development of appropriate response strategies are critical for managing future occurrences. This study investigates to answer these research questions (RQs):

中文翻译:


大流行病中的运输行为和政府干预:用于道路安全的混合可解释机器学习



在大流行期间,交通部门和政策制定者在识别和验证新的出行行为及其如何影响交通事故模式以制定有效的安全策略方面面临重大挑战。及时评估紧急事件的长期影响并制定适当的响应策略对于管理未来事件至关重要。本研究调查以回答以下研究问题 (RQ):
更新日期:2024-10-26
down
wechat
bug