当前位置: X-MOL 学术Anal. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CBMAFF-Net: An Intelligent NMR-Based Nontargeted Screening Method for New Psychoactive Substances
Analytical Chemistry ( IF 6.7 ) Pub Date : 2024-11-13 , DOI: 10.1021/acs.analchem.4c03008
Xiaoshan Zheng, Boyi Tang, Peng Xu, Youmei Wang, Bin Di, Zhendong Hua, Mengxiang Su, Jun Liao

With the proliferation and rapid evolution of new psychoactive substances (NPSs), traditional database-based search methods face increasing challenges in identifying NPS seizures with complex compositions, thereby complicating their regulation and early warning. To address this issue, CBMAFF-Net (CNN BiLSTM Multistep Attentional Feature Fusion Network) is proposed as an intelligent screening method to rapidly classify unknown confiscated substances using 13C nuclear magnetic resonance (NMR) and 1H NMR data. Initially, we utilize the synergy of a convolutional neural network (CNN) and bidirectional long short-term memory network (BiLSTM) to extract the global and local features of the NMR data. These features are sequentially fused through a weighted approach guided by an attention mechanism, thoroughly capturing the essential NPS information. We evaluated the model on a generated simulated data set, where it performed with 99.8% accuracy and a 99.8% F1 score. Additionally, testing on 42 actual seizure cases yielded a recognition accuracy of 97.6%, significantly surpassing the performance of conventional database-based similarity search algorithms. These findings suggest that the proposed method holds substantial promise for the rapid screening and classification of NPSs.

中文翻译:


CBMAFF-Net:一种基于智能 NMR 的新型精神活性物质非靶向筛选方法



随着新精神活性物质 (NPS) 的扩散和快速进化,传统的基于数据库的搜索方法在识别成分复杂的 NPS 癫痫发作方面面临越来越大的挑战,从而使它们的监管和早期预警复杂化。针对这一问题,提出了一种智能筛选方法CBMAFF-Net(CNN BiLSTM Multistep Attentional Feature Fusion Network),利用13C核磁共振(NMR)和1H NMR数据对未知没收物质进行快速分类。最初,我们利用卷积神经网络 (CNN) 和双向长短期记忆网络 (BiLSTM) 的协同作用来提取 NMR 数据的全局和局部特征。这些特征通过由注意力机制指导的加权方法依次融合,彻底捕获基本的 NPS 信息。我们在生成的模拟数据集上评估了该模型,其性能准确率为 99.8%,F1 得分为 99.8%。此外,对 42 个实际查获案例的测试产生了 97.6% 的识别准确率,大大超过了传统的基于数据库的相似性搜索算法的性能。这些发现表明,所提出的方法为 NPS 的快速筛选和分类具有重大前景。
更新日期:2024-11-13
down
wechat
bug