当前位置:
X-MOL 学术
›
Ind. Eng. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Biobased Hyperbranched Flame Retardant for Epoxy Resin Modification: Simultaneously Improved Flame Retardancy, Toughness, and Smoke Toxicity Suppression
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2024-11-12 , DOI: 10.1021/acs.iecr.4c03418 Xiawei Chen, Shuaipeng Wang, Sakil Mahmud, Jian Wang, Jinyue Dai, Xiaoqing Liu
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2024-11-12 , DOI: 10.1021/acs.iecr.4c03418 Xiawei Chen, Shuaipeng Wang, Sakil Mahmud, Jian Wang, Jinyue Dai, Xiaoqing Liu
Reducing both the flammability and the frangibility of epoxy resins (EPs) while inhibiting the smoke toxicity of combustion presents a significant challenge. In this study, a hyperbranched low-phosphorus (P)-containing flame-retardant polymer (HBFR) was synthesized to chemically modify epoxy resin. Results demonstrated that the modified epoxy achieved a V-0 rating in the UL-94 test and exhibited a limiting oxygen index (LOI) of 31.5%, with a P content of only 0.42 wt %. The peak heat release rate (PHRR) and total smoke production (TSP) of C-EP92.5HBFR7.5 decreased by 31.4% and 19.1%, respectively, compared to cured pristine EP (C-EP). The maximum carbon monoxide emission of C-EP92.5HBFR7.5 decreased by 39.4% and 16.2% during combustion compared with C-EP and commercial flame retardants, respectively. Furthermore, the impact and flexural strength of C-EP92.5HBFR7.5 increased remarkably by 257.5% and 20.3%, respectively, due to the enhanced free volumes and toughening effects caused by HBFR. Meanwhile, the modified epoxy thermosets still maintained high Tg (>168 °C) and thermostability (Td5% > 361 °C). In sum, this work provides an efficient and eco-friendly strategy for concurrently enhancing the flame retardancy (FR) and toughness of epoxy thermosets.
中文翻译:
用于环氧树脂改性的生物基超支化阻燃剂:同时提高阻燃性、韧性和烟雾毒性抑制
降低环氧树脂 (EP) 的可燃性和易碎性,同时抑制燃烧的烟雾毒性是一项重大挑战。在本研究中,合成了一种超支化低磷 (P) 阻燃聚合物 (HBFR) 以化学方式改性环氧树脂。结果表明,改性环氧树脂在 UL-94 测试中达到 V-0 等级,极限氧指数 (LOI) 为 31.5%,P 含量仅为 0.42 wt %。与固化的原始 EP (C-EP) 相比,C-EP92.5HBFR7.5 的峰值热释放率 (PHRR) 和总烟雾产生量 (TSP) 分别降低了 31.4% 和 19.1%。与 C-EP 和商用阻燃剂相比,C-EP92.5HBFR7.5 在燃烧过程中的最大一氧化碳排放量分别降低了 39.4% 和 16.2%。此外,由于 HBFR 引起的自由体积和增韧效应增加,C-EP92.5HBFR7.5 的抗冲击强度和弯曲强度分别显著提高了 257.5% 和 20.3%。同时,改性环氧树脂热固性材料仍保持较高的 Tg (>168 °C) 和热稳定性 (Td5% > 361 °C)。总之,这项工作为同时提高环氧树脂热固性塑料的阻燃性 (FR) 和韧性提供了一种高效且环保的策略。
更新日期:2024-11-12
中文翻译:
用于环氧树脂改性的生物基超支化阻燃剂:同时提高阻燃性、韧性和烟雾毒性抑制
降低环氧树脂 (EP) 的可燃性和易碎性,同时抑制燃烧的烟雾毒性是一项重大挑战。在本研究中,合成了一种超支化低磷 (P) 阻燃聚合物 (HBFR) 以化学方式改性环氧树脂。结果表明,改性环氧树脂在 UL-94 测试中达到 V-0 等级,极限氧指数 (LOI) 为 31.5%,P 含量仅为 0.42 wt %。与固化的原始 EP (C-EP) 相比,C-EP92.5HBFR7.5 的峰值热释放率 (PHRR) 和总烟雾产生量 (TSP) 分别降低了 31.4% 和 19.1%。与 C-EP 和商用阻燃剂相比,C-EP92.5HBFR7.5 在燃烧过程中的最大一氧化碳排放量分别降低了 39.4% 和 16.2%。此外,由于 HBFR 引起的自由体积和增韧效应增加,C-EP92.5HBFR7.5 的抗冲击强度和弯曲强度分别显著提高了 257.5% 和 20.3%。同时,改性环氧树脂热固性材料仍保持较高的 Tg (>168 °C) 和热稳定性 (Td5% > 361 °C)。总之,这项工作为同时提高环氧树脂热固性塑料的阻燃性 (FR) 和韧性提供了一种高效且环保的策略。