当前位置:
X-MOL 学术
›
J. Magnes. Alloys
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Rare-Earth based magnesium alloys as a potential biomaterial for the future
Journal of Magnesium and Alloys ( IF 15.8 ) Pub Date : 2024-11-07 , DOI: 10.1016/j.jma.2024.10.006 Abhishek Kumar, Amit Choudhari, Ashish Kumar Gupta, Avinash Kumar
Journal of Magnesium and Alloys ( IF 15.8 ) Pub Date : 2024-11-07 , DOI: 10.1016/j.jma.2024.10.006 Abhishek Kumar, Amit Choudhari, Ashish Kumar Gupta, Avinash Kumar
Magnesium (Mg) is renowned for its unique combination of low weight, high strength-to-weight ratio, biocompatibility, and natural abundance, positioning it as an ideal candidate for biodegradable implants in biomedicine. Despite these advantageous properties, challenges such as poor formability and susceptibility to corrosion have restricted its broader application. This review critically addresses these limitations by delving into Mg's biodegradation mechanisms and the various degradation modes activated by different physiological environments. Emphasis is placed on understanding these processes to optimize Mg's utility as a biomaterial. Additionally, the transformative potential of integrating rare-earth (RE) elements into Mg alloys is explored. These elements significantly refine the microstructure, enhance mechanical properties, and improve corrosion resistance, effectively mitigating some of Mg's inherent limitations. Rare earth elements (REEs) significantly improve the mechanical properties of magnesium alloys. Cerium and lanthanum form protective oxide layers, reducing corrosion. Neodymium prevents hydrogen embrittlement, while yttrium refines grain size. The combination of REEs offers a diverse range of properties, including enhanced strength, creep resistance, high-temperature performance, corrosion resistance, ductility, and toughness. This versatility allows for tailored alloy selection for specific applications. The review also assesses the effects of various RE elements on biodegradability, cytotoxicity, and biological interaction, which are crucial for medical applications. Furthermore, the innovative realm of additive manufacturing (AM) is investigated to develop efficient Mg-RE-based biomedical implants, enabling the precise customization of implants to meet individual patient needs. Through a comprehensive evaluation of the latest research, this study projects the promising future of Mg-RE alloys as groundbreaking biomaterials poised to redefine medical implant technology with their superior mechanical and biological properties.
中文翻译:
稀土基镁合金作为未来潜在的生物材料
镁 (Mg) 以其低重量、高强度重量比、生物相容性和天然丰度的独特组合而闻名,使其成为生物医学中可生物降解植入物的理想候选者。尽管具有这些优点,但成型性差和易腐蚀等挑战限制了其更广泛的应用。本综述通过深入研究 Mg 的生物降解机制和不同生理环境激活的各种降解模式,批判性地解决了这些限制。重点放在了解这些过程上,以优化 Mg 作为生物材料的效用。此外,还探索了将稀土 (RE) 元素整合到 Mg 合金中的变革潜力。这些元素显着改善了微观结构,增强了机械性能,并提高了耐腐蚀性,有效地减轻了 Mg 的一些固有限制。稀土元素 (REE) 显着改善镁合金的机械性能。铈和镧形成保护性氧化层,减少腐蚀。钕可防止氢脆,而钇则细化晶粒尺寸。稀土元素的组合提供了多种性能,包括增强的强度、抗蠕变性、高温性能、耐腐蚀性、延展性和韧性。这种多功能性允许为特定应用定制合金选择。该综述还评估了各种 RE 元件对生物降解性、细胞毒性和生物相互作用的影响,这对医疗应用至关重要。 此外,还研究了增材制造 (AM) 的创新领域,以开发基于 Mg-RE 的高效生物医学植入物,从而能够精确定制植入物以满足个体患者需求。通过对最新研究的全面评估,本研究预测了 Mg-RE 合金作为开创性生物材料的光明前景,有望以其卓越的机械和生物性能重新定义医疗植入技术。
更新日期:2024-11-07
中文翻译:
稀土基镁合金作为未来潜在的生物材料
镁 (Mg) 以其低重量、高强度重量比、生物相容性和天然丰度的独特组合而闻名,使其成为生物医学中可生物降解植入物的理想候选者。尽管具有这些优点,但成型性差和易腐蚀等挑战限制了其更广泛的应用。本综述通过深入研究 Mg 的生物降解机制和不同生理环境激活的各种降解模式,批判性地解决了这些限制。重点放在了解这些过程上,以优化 Mg 作为生物材料的效用。此外,还探索了将稀土 (RE) 元素整合到 Mg 合金中的变革潜力。这些元素显着改善了微观结构,增强了机械性能,并提高了耐腐蚀性,有效地减轻了 Mg 的一些固有限制。稀土元素 (REE) 显着改善镁合金的机械性能。铈和镧形成保护性氧化层,减少腐蚀。钕可防止氢脆,而钇则细化晶粒尺寸。稀土元素的组合提供了多种性能,包括增强的强度、抗蠕变性、高温性能、耐腐蚀性、延展性和韧性。这种多功能性允许为特定应用定制合金选择。该综述还评估了各种 RE 元件对生物降解性、细胞毒性和生物相互作用的影响,这对医疗应用至关重要。 此外,还研究了增材制造 (AM) 的创新领域,以开发基于 Mg-RE 的高效生物医学植入物,从而能够精确定制植入物以满足个体患者需求。通过对最新研究的全面评估,本研究预测了 Mg-RE 合金作为开创性生物材料的光明前景,有望以其卓越的机械和生物性能重新定义医疗植入技术。