当前位置:
X-MOL 学术
›
J. Magnes. Alloys
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Breaking Mg matrix composite property trade-offs via in-situ interface reaction and heterogeneous structure design
Journal of Magnesium and Alloys ( IF 15.8 ) Pub Date : 2024-11-02 , DOI: 10.1016/j.jma.2024.10.008 Z.Y. Xu, Y.Q. You, Q. Lu, C.J. Li, M. Song, J. Tan, L. Liu, X.F. Chen, J.H. Yi
Journal of Magnesium and Alloys ( IF 15.8 ) Pub Date : 2024-11-02 , DOI: 10.1016/j.jma.2024.10.008 Z.Y. Xu, Y.Q. You, Q. Lu, C.J. Li, M. Song, J. Tan, L. Liu, X.F. Chen, J.H. Yi
Many properties of Mg matrix composites are mutually incompatible, and even completely repel each other. Here, we constructed a magnetic layered component in Mg matrix composite reinforced with reduced graphene oxide (RGO) through an in-situ interface reaction strategy, achieving simultaneous improvement in the strength, ductility, and electromagnetic shielding performance of the composite. The magnetic component is generated by the in-situ reaction of Fe2O3 nanoparticles encapsulated on RGO with the Mg matrix. The superior strength-ductility synergy originates from layered heterostructure, which actives non-basal dislocations and enables a stable microcrack-multiplication. The heterogeneous layered structure strengthens the multi-level reflection of electromagnetic wave (EMW) inside the composite. The in-situ interfacial reaction introduces abundant of heterogeneous interfaces into the composites, which improves the interfacial polarization loss ability of the composites. The magnetic RGO layer can provide shape anisotropy that breaks the Snoek limit, thus improving the magnetic loss ability of composite in high-frequency electromagnetic fields. The synergistic action of multiple EMW loss mechanisms improves the electromagnetic shielding performance of composite. The current study emphasizes the influence of interface structure on the mechanical and functional properties of composites, and presents a promising approach for the development of structure/functional integrated composites with enhanced properties.
中文翻译:
通过原位界面反应和非均相结构设计打破 Mg 基复合材料性能的权衡
Mg 基复合材料的许多特性是互不相容的,甚至完全相互排斥。在这里,我们通过原位界面反应策略在用还原氧化石墨烯 (RGO) 增强的 Mg 基复合材料中构建了一个磁性层状组件,实现了复合材料的强度、延展性和电磁屏蔽性能的同步提高。磁性成分是由封装在 RGO 上的 Fe2O3 纳米颗粒与 Mg 基体的原位反应产生的。卓越的强度-延展性协同作用源于层状异质结构,它激活了非基底位错并实现了稳定的微裂纹倍增。异质层状结构加强了电磁波 (EMW) 在复合材料内部的多级反射。原位界面反应在复合材料中引入了丰富的非均相界面,从而提高了复合材料的界面极化损失能力。磁性 RGO 层可以提供打破 Snoek 极限的形状各向异性,从而提高复合材料在高频电磁场中的磁损耗能力。多种 EMW 损耗机制的协同作用提高了复合材料的电磁屏蔽性能。目前的研究强调了界面结构对复合材料力学和功能性能的影响,并为开发具有增强性能的结构/功能集成复合材料提供了一种有前途的方法。
更新日期:2024-11-03
中文翻译:
通过原位界面反应和非均相结构设计打破 Mg 基复合材料性能的权衡
Mg 基复合材料的许多特性是互不相容的,甚至完全相互排斥。在这里,我们通过原位界面反应策略在用还原氧化石墨烯 (RGO) 增强的 Mg 基复合材料中构建了一个磁性层状组件,实现了复合材料的强度、延展性和电磁屏蔽性能的同步提高。磁性成分是由封装在 RGO 上的 Fe2O3 纳米颗粒与 Mg 基体的原位反应产生的。卓越的强度-延展性协同作用源于层状异质结构,它激活了非基底位错并实现了稳定的微裂纹倍增。异质层状结构加强了电磁波 (EMW) 在复合材料内部的多级反射。原位界面反应在复合材料中引入了丰富的非均相界面,从而提高了复合材料的界面极化损失能力。磁性 RGO 层可以提供打破 Snoek 极限的形状各向异性,从而提高复合材料在高频电磁场中的磁损耗能力。多种 EMW 损耗机制的协同作用提高了复合材料的电磁屏蔽性能。目前的研究强调了界面结构对复合材料力学和功能性能的影响,并为开发具有增强性能的结构/功能集成复合材料提供了一种有前途的方法。