当前位置:
X-MOL 学术
›
J. Mater. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fundamental study on the construction of anti-wear drug delivery system through the design of titanium surface morphology
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2024-11-01 , DOI: 10.1016/j.jmst.2024.10.012 Tong Ding, Yanfang Zhang, Yuankun Hou, Lei Zhou, Jianxing Zhang, Tengfei Wu, Zhiguo Xing, Sefei Yang
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2024-11-01 , DOI: 10.1016/j.jmst.2024.10.012 Tong Ding, Yanfang Zhang, Yuankun Hou, Lei Zhou, Jianxing Zhang, Tengfei Wu, Zhiguo Xing, Sefei Yang
The durability of dental implant carrier coatings is of paramount importance for the expeditious and predictable osseointegration process. The present work is based on a bionic micro/nano hierarchy structure, which consists of titanium surface microstructures and their internal TiO2 nanotubes (TNTs) with drug-carrying capacity. This effectively increases the wear resistance of the drug-carrying coating on the titanium surface. In comparison to untextured samples, the wear volume and wear depth of the optimal texture group are markedly diminished, resulting in a significant enhancement of wear resistance. This improvement was primarily attributed to the smaller contact area of the microstructure. Concurrently, the microstructure serves to safeguard the TNTs from damage during friction. The hydrophilic biomimetic anti-wear micro/nano hierarchies demonstrated the capacity to promote MC3T3-E1 cell adhesion and proliferation, while also exhibiting no cytotoxic effects. Moreover, the micro/nano hierarchical structure can be directly applied to the surface of commercialized implants. In simulated clinical conditions, the implant was inserted into a fresh Bama porcine mandible, and the structure of the drug-loading coatings remained intact. This structure enhances the abrasion resistance of the drug coating while minimizing alterations to the original treatment process of the implant, which is of great significance in the clinical application of implant-loaded drug delivery.
中文翻译:
通过钛表面形貌设计构建抗磨药物递送系统的基础研究
牙科种植体载体涂层的耐用性对于快速和可预测的骨整合过程至关重要。目前的工作基于仿生微/纳米层次结构,它由钛表面微结构及其内部具有载药能力的 TiO2 纳米管 (TNT) 组成。这有效地增加了钛表面载药涂层的耐磨性。与无纹理样品相比,最佳纹理组的磨损体积和磨损深度明显减少,从而显着提高了耐磨性。这种改进主要归因于微观结构的接触面积较小。同时,微观结构用于保护 TNT 在摩擦过程中免受损坏。亲水仿生抗磨微/纳米层次结构证明了促进 MC3T3-E1 细胞粘附和增殖的能力,同时也表现出无细胞毒性作用。此外,微/纳分层结构可以直接应用于商业化植入物的表面。在模拟临床条件下,将植入物插入新鲜的 Bama 猪下颌骨中,载药涂层的结构保持完整。这种结构增强了药物涂层的耐磨性,同时最大限度地减少了对植入物原始治疗过程的改变,这在植入物负载药物输送的临床应用中具有重要意义。
更新日期:2024-11-01
中文翻译:
通过钛表面形貌设计构建抗磨药物递送系统的基础研究
牙科种植体载体涂层的耐用性对于快速和可预测的骨整合过程至关重要。目前的工作基于仿生微/纳米层次结构,它由钛表面微结构及其内部具有载药能力的 TiO2 纳米管 (TNT) 组成。这有效地增加了钛表面载药涂层的耐磨性。与无纹理样品相比,最佳纹理组的磨损体积和磨损深度明显减少,从而显着提高了耐磨性。这种改进主要归因于微观结构的接触面积较小。同时,微观结构用于保护 TNT 在摩擦过程中免受损坏。亲水仿生抗磨微/纳米层次结构证明了促进 MC3T3-E1 细胞粘附和增殖的能力,同时也表现出无细胞毒性作用。此外,微/纳分层结构可以直接应用于商业化植入物的表面。在模拟临床条件下,将植入物插入新鲜的 Bama 猪下颌骨中,载药涂层的结构保持完整。这种结构增强了药物涂层的耐磨性,同时最大限度地减少了对植入物原始治疗过程的改变,这在植入物负载药物输送的临床应用中具有重要意义。