当前位置: X-MOL 学术Med. Image Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
MedLSAM: Localize and segment anything model for 3D CT images
Medical Image Analysis ( IF 10.7 ) Pub Date : 2024-10-15 , DOI: 10.1016/j.media.2024.103370
Wenhui Lei, Wei Xu, Kang Li, Xiaofan Zhang, Shaoting Zhang

Recent advancements in foundation models have shown significant potential in medical image analysis. However, there is still a gap in models specifically designed for medical image localization. To address this, we introduce MedLAM, a 3D medical foundation localization model that accurately identifies any anatomical part within the body using only a few template scans. MedLAM employs two self-supervision tasks: unified anatomical mapping (UAM) and multi-scale similarity (MSS) across a comprehensive dataset of 14,012 CT scans. Furthermore, we developed MedLSAM by integrating MedLAM with the Segment Anything Model (SAM). This innovative framework requires extreme point annotations across three directions on several templates to enable MedLAM to locate the target anatomical structure in the image, with SAM performing the segmentation. It significantly reduces the amount of manual annotation required by SAM in 3D medical imaging scenarios. We conducted extensive experiments on two 3D datasets covering 38 distinct organs. Our findings are twofold: (1) MedLAM can directly localize anatomical structures using just a few template scans, achieving performance comparable to fully supervised models; (2) MedLSAM closely matches the performance of SAM and its specialized medical adaptations with manual prompts, while minimizing the need for extensive point annotations across the entire dataset. Moreover, MedLAM has the potential to be seamlessly integrated with future 3D SAM models, paving the way for enhanced segmentation performance. Our code is public at https://github.com/openmedlab/MedLSAM.

中文翻译:


MedLSAM:定位和分割任何模型以获得 3D CT 图像



基础模型的最新进展在医学图像分析中显示出巨大的潜力。然而,专门为医学图像定位设计的模型仍然存在差距。为了解决这个问题,我们引入了 MedLAM,这是一种 3D 医疗基础定位模型,只需几次模板扫描即可准确识别体内的任何解剖部位。MedLAM 采用两项自我监督任务:统一解剖映射 (UAM) 和多尺度相似性 (MSS),涵盖 14,012 次 CT 扫描的综合数据集。此外,我们还通过将 MedLAM 与 Segment Anything Model (SAM) 集成来开发 MedLSAM。这种创新框架需要在多个模板上跨三个方向进行极端点注释,以使 MedLAM 能够在图像中定位目标解剖结构,并由 SAM 执行分割。它显著减少了 SAM 在 3D 医学成像场景中所需的手动注释量。我们在两个涵盖 38 个不同器官的 3D 数据集上进行了广泛的实验。我们的发现有两个方面:(1) MedLAM 只需几次模板扫描即可直接定位解剖结构,实现与完全监督模型相当的性能;(2) MedLSAM 将 SAM 的性能及其专门的医学适应与手动提示紧密匹配,同时最大限度地减少了整个数据集中对大量点注释的需求。此外,MedLAM 有可能与未来的 3D SAM 模型无缝集成,为增强分割性能铺平道路。我们的代码在 https://github.com/openmedlab/MedLSAM 上公开。
更新日期:2024-10-15
down
wechat
bug