当前位置: X-MOL 学术npj Digit. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Prediction of total and regional body composition from 3D body shape
npj Digital Medicine ( IF 12.4 ) Pub Date : 2024-10-23 , DOI: 10.1038/s41746-024-01289-0
Chexuan Qiao, Emanuella De Lucia Rolfe, Ethan Mak, Akash Sengupta, Richard Powell, Laura P. E. Watson, Steven B. Heymsfield, John A. Shepherd, Nicholas Wareham, Soren Brage, Roberto Cipolla

Accurate assessment of body composition is essential for evaluating the risk of chronic disease. 3D body shape, obtainable using smartphones, correlates strongly with body composition. We present a novel method that fits a 3D body mesh to a dual-energy X-ray absorptiometry (DXA) silhouette (emulating a single photograph) paired with anthropometric traits, and apply it to the multi-phase Fenland study comprising 12,435 adults. Using baseline data, we derive models predicting total and regional body composition metrics from these meshes. In Fenland follow-up data, all metrics were predicted with high correlations (r > 0.86). We also evaluate a smartphone app which reconstructs a 3D mesh from phone images to predict body composition metrics; this analysis also showed strong correlations (r > 0.84) for all metrics. The 3D body shape approach is a valid alternative to medical imaging that could offer accessible health parameters for monitoring the efficacy of lifestyle intervention programmes.



中文翻译:


根据 3D 体型预测总体型和区域体型组成



准确评估身体成分对于评估慢性病风险至关重要。使用智能手机可以获得的 3D 体型与身体成分密切相关。我们提出了一种新颖的方法,该方法将 3D 体网拟合到双能 X 射线吸收测定法 (DXA) 轮廓(模拟单张照片)与人体测量特征配对,并将其应用于由 12,435 名成年人组成的多阶段 Fenland 研究。使用基线数据,我们从这些网格中得出预测总和区域身体成分指标的模型。在 Fenland 随访数据中,所有指标均以高度相关性预测 (r > 0.86)。我们还评估了一款智能手机应用程序,该应用程序从手机图像中重建 3D 网格以预测身体成分指标;该分析还显示所有指标都具有很强的相关性 (r > 0.84)。3D 体型方法是医学成像的有效替代方案,它可以提供可访问的健康参数来监测生活方式干预计划的有效性。

更新日期:2024-10-24
down
wechat
bug