当前位置:
X-MOL 学术
›
Biotechnol. Adv.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Constructed wetland microbial fuel cell as enhancing pollutants treatment technology to produce green energy
Biotechnology Advances ( IF 12.1 ) Pub Date : 2024-10-20 , DOI: 10.1016/j.biotechadv.2024.108468 Iryna Rusyn, Julio César Gómora-Hernández
Biotechnology Advances ( IF 12.1 ) Pub Date : 2024-10-20 , DOI: 10.1016/j.biotechadv.2024.108468 Iryna Rusyn, Julio César Gómora-Hernández
The persistent challenge of water pollution, exacerbated by slow progress in ecofriendly technologies and accumulating pollutants, underscores the need for innovative solutions. Constructed Wetland Microbial Fuel Cell (CW-MFC) emerges as an intriguing environmental technology capable of adressing this issue by eliminating contaminants from wastewater while simultaneously producing green energy as an additional bonus. In recent years, CW-MFC technology has gained attention due to its sustainability and promising prospects for a circular waste-free industry. However, due to various technological and biological challenges, it has not yet achieved wide-scale application. This review examines the current state of CW-MFC technology and identifies both biotic and abiotic strategies for optimization through operational and structural improvements affecting biocomponents. Our review highlights several key findings: (1) Plants play an important role in reducing the system's inner resistance through mechanisms such as radial oxygen loss, evapotranspiration, and high photosynthetic flow, which facilitate electroactive bacteria and affect redox potential. (2) Plant characteristics such as root porosity, phloem and aerenchyma development, chlorophyll content, and plant biomass are key indicators of CW-MFC performance and significantly impact both pollutant removal and energy harvesting. (3) We expand the criteria for selecting suitable plants to include mesophytes and C3 pollutant-tolerant species, in addition to traditional aquatic and C4 plants. Additionally, the review presents several technical approaches that enhance CW-MFC efficiency: (1) design optimization, (2) use of novel materials, and (3) application of external electrical fields, aeration, light, and temperature adjustments. CW-MFCs are capable of nearly complete elimination of a wide range of contaminants, including organic matter (84 % ± 10), total nitrogen (80 % ± 7) and phosphorus (79 % ± 18) compounds, metals (86 % ± 10), pharmaceuticals (87 % ± 7), dyes (90 % ± 8), and other complex pollutants, while generating green energy. We hope our findings will be useful in optimizing CW-MFC design and providing insights for researchers aiming to advance the technology and facilitate its future scaling.
中文翻译:
建造湿地微生物燃料电池作为强化污染物处理技术以生产绿色能源
生态友好型技术的缓慢发展和污染物的积累加剧了水污染的持续挑战,这凸显了创新解决方案的必要性。人工湿地微生物燃料电池 (CW-MFC) 作为一种有趣的环境技术出现,能够通过消除废水中的污染物来解决这个问题,同时生产绿色能源作为额外的好处。近年来,CW-MFC 技术因其可持续性和循环无废料行业的光明前景而受到关注。然而,由于各种技术和生物学挑战,它尚未实现大规模应用。这篇综述研究了 CW-MFC 技术的现状,并通过影响生物成分的操作和结构改进确定了生物和非生物优化策略。我们的综述强调了几个关键发现:(1) 植物通过径向氧损失、蒸散和高光合流等机制在降低系统内部阻力方面发挥着重要作用,这些机制促进了电活性细菌并影响氧化还原电位。(2) 根孔隙度、韧皮部和气囊组织发育、叶绿素含量和植物生物量等植物特性是 CW-MFC 性能的关键指标,对污染物去除和能量收集都有重大影响。(3) 我们扩大了选择合适植物的标准,除了传统的水生植物和 C4 植物外,还包括中生植物和 C3 耐污染物种。 此外,本文还提出了几种提高 CW-MFC 效率的技术方法:(1) 设计优化,(2) 使用新型材料,以及 (3) 外部电场、曝气、光和温度调节的应用。CW-MFC 能够几乎完全消除多种污染物,包括有机物 (84 % ± 10)、总氮 (80 % ± 7) 和磷 (79 % ± 18) 化合物、金属 (86 % ± 10)、药物 (87 % ± 7)、染料 (90 % ± 8) 和其他复杂污染物,同时产生绿色能源。我们希望我们的发现将有助于优化 CW-MFC 设计,并为旨在推进该技术并促进其未来扩展的研究人员提供见解。
更新日期:2024-10-20
中文翻译:
建造湿地微生物燃料电池作为强化污染物处理技术以生产绿色能源
生态友好型技术的缓慢发展和污染物的积累加剧了水污染的持续挑战,这凸显了创新解决方案的必要性。人工湿地微生物燃料电池 (CW-MFC) 作为一种有趣的环境技术出现,能够通过消除废水中的污染物来解决这个问题,同时生产绿色能源作为额外的好处。近年来,CW-MFC 技术因其可持续性和循环无废料行业的光明前景而受到关注。然而,由于各种技术和生物学挑战,它尚未实现大规模应用。这篇综述研究了 CW-MFC 技术的现状,并通过影响生物成分的操作和结构改进确定了生物和非生物优化策略。我们的综述强调了几个关键发现:(1) 植物通过径向氧损失、蒸散和高光合流等机制在降低系统内部阻力方面发挥着重要作用,这些机制促进了电活性细菌并影响氧化还原电位。(2) 根孔隙度、韧皮部和气囊组织发育、叶绿素含量和植物生物量等植物特性是 CW-MFC 性能的关键指标,对污染物去除和能量收集都有重大影响。(3) 我们扩大了选择合适植物的标准,除了传统的水生植物和 C4 植物外,还包括中生植物和 C3 耐污染物种。 此外,本文还提出了几种提高 CW-MFC 效率的技术方法:(1) 设计优化,(2) 使用新型材料,以及 (3) 外部电场、曝气、光和温度调节的应用。CW-MFC 能够几乎完全消除多种污染物,包括有机物 (84 % ± 10)、总氮 (80 % ± 7) 和磷 (79 % ± 18) 化合物、金属 (86 % ± 10)、药物 (87 % ± 7)、染料 (90 % ± 8) 和其他复杂污染物,同时产生绿色能源。我们希望我们的发现将有助于优化 CW-MFC 设计,并为旨在推进该技术并促进其未来扩展的研究人员提供见解。