当前位置: X-MOL 学术Gastrointest. Endosc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A deep learning–based, real-time image report system for linear EUS
Gastrointestinal Endoscopy ( IF 6.7 ) Pub Date : 2024-10-19 , DOI: 10.1016/j.gie.2024.10.030
Xun Li MD, Liwen Yao PhD, Huiling Wu MD, Wei Tan MD, Wei Zhou MD, Jun Zhang MD, Zehua Dong MD, Xiangwu Ding MD, Honggang Yu MD

The integrity of image acquisition is critical for biliopancreatic EUS reporting, significantly affecting the quality of EUS examinations and disease-related decision-making. However, the quality of EUS reports varies among endoscopists. To address this issue, we developed a deep learning–based EUS automatic image report system (EUS-AIRS), aiming to achieve automatic photodocumentation in real-time during EUS, including capturing standard stations, lesions, and puncture procedures.

中文翻译:


基于深度学习的线性 EUS 实时图像报告系统



图像采集的完整性对于胆胰 EUS 报告至关重要,会显著影响 EUS 检查和疾病相关决策的质量。然而,EUS 报告的质量因内镜医师而异。为了解决这个问题,我们开发了一种基于深度学习的 EUS 自动图像报告系统 (EUS-AIRS),旨在在 EUS 期间实现实时自动照片记录,包括捕获标准站、病灶和穿刺程序。
更新日期:2024-10-19
down
wechat
bug