当前位置: X-MOL 学术npj Digit. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Feasibility of snapshot testing using wearable sensors to detect cardiorespiratory illness (COVID infection in India)
npj Digital Medicine ( IF 12.4 ) Pub Date : 2024-10-19 , DOI: 10.1038/s41746-024-01287-2
Olivia K. Botonis, Jonathan Mendley, Shreya Aalla, Nicole C. Veit, Michael Fanton, JongYoon Lee, Vikrant Tripathi, Venkatesh Pandi, Akash Khobragade, Sunil Chaudhary, Amitav Chaudhuri, Vaidyanathan Narayanan, Shuai Xu, Hyoyoung Jeong, John A. Rogers, Arun Jayaraman

The COVID-19 pandemic has challenged the current paradigm of clinical and community-based disease detection. We present a multimodal wearable sensor system paired with a two-minute, movement-based activity sequence that successfully captures a snapshot of physiological data (including cardiac, respiratory, temperature, and percent oxygen saturation). We conducted a large, multi-site trial of this technology across India from June 2021 to April 2022 amidst the COVID-19 pandemic (Clinical trial registry name: International Validation of Wearable Sensor to Monitor COVID-19 Like Signs and Symptoms; NCT05334680; initial release: 04/15/2022). An Extreme Gradient Boosting algorithm was trained to discriminate between COVID-19 infected individuals (n = 295) and COVID-19 negative healthy controls (n = 172) and achieved an F1-Score of 0.80 (95% CI = [0.79, 0.81]). SHAP values were mapped to visualize feature importance and directionality, yielding engineered features from core temperature, cough, and lung sounds as highly important. The results demonstrated potential for data-driven wearable sensor technology for remote preliminary screening, highlighting a fundamental pivot from continuous to snapshot monitoring of cardiorespiratory illnesses.



中文翻译:


使用可穿戴传感器进行快照测试检测心肺疾病(印度的 COVID 感染)的可行性



COVID-19 大流行挑战了当前基于临床和社区的疾病检测范式。我们提出了一个多模式可穿戴传感器系统,该系统与两分钟的基于运动的活动序列配对,可成功捕获生理数据(包括心脏、呼吸、体温和血氧饱和度百分比)的快照。在 COVID-19 大流行期间,我们于 2021 年 6 月至 2022 年 4 月在印度对这项技术进行了大型多中心试验(临床试验注册名称:可穿戴传感器监测 COVID-19 样体征和症状的国际验证;NCT05334680;初始版本:2022 年 4 月 15 日)。训练极端梯度提升算法来区分 COVID-19 感染个体 (n = 295) 和 COVID-19 阴性健康对照 (n = 172),并取得了 0.80 的 F1 评分 (95% CI = [0.79, 0.81])。对 SHAP 值进行映射以可视化特征重要性和方向性,从而产生来自核心温度、咳嗽和肺音的工程特征非常重要。结果显示了数据驱动的可穿戴传感器技术在远程初步筛查中的潜力,突出了从心肺疾病连续监测到快照监测的基本转变。

更新日期:2024-10-19
down
wechat
bug