当前位置: X-MOL 学术Genome Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
HBI: a hierarchical Bayesian interaction model to estimate cell-type-specific methylation quantitative trait loci incorporating priors from cell-sorted bisulfite sequencing data
Genome Biology ( IF 10.1 ) Pub Date : 2024-10-15 , DOI: 10.1186/s13059-024-03411-7
Youshu Cheng, Biao Cai, Hongyu Li, Xinyu Zhang, Gypsyamber D’Souza, Sadeep Shrestha, Andrew Edmonds, Jacquelyn Meyers, Margaret Fischl, Seble Kassaye, Kathryn Anastos, Mardge Cohen, Bradley E. Aouizerat, Ke Xu, Hongyu Zhao

Methylation quantitative trait loci (meQTLs) quantify the effects of genetic variants on DNA methylation levels. However, most published studies utilize bulk methylation datasets composed of different cell types and limit our understanding of cell-type-specific methylation regulation. We propose a hierarchical Bayesian interaction (HBI) model to infer cell-type-specific meQTLs, which integrates a large-scale bulk methylation data and a small-scale cell-type-specific methylation data. Through simulations, we show that HBI enhances the estimation of cell-type-specific meQTLs. In real data analyses, we demonstrate that HBI can further improve the functional annotation of genetic variants and identify biologically relevant cell types for complex traits.

中文翻译:


HBI:一种分层贝叶斯相互作用模型,用于估计细胞类型特异性甲基化数量性状位点,其中包含来自细胞分选的亚硫酸氢盐测序数据的先验



甲基化数量性状位点 (meQTL) 量化遗传变异对 DNA 甲基化水平的影响。然而,大多数已发表的研究利用由不同细胞类型组成的大量甲基化数据集,这限制了我们对细胞类型特异性甲基化调控的理解。我们提出了一种分层贝叶斯相互作用 (HBI) 模型来推断细胞类型特异性 meQTL,该模型集成了大规模批量甲基化数据和小规模细胞类型特异性甲基化数据。通过模拟,我们表明 HBI 增强了细胞类型特异性 meQTL 的估计。在实际数据分析中,我们证明 HBI 可以进一步改善遗传变异的功能注释,并识别复杂性状的生物学相关细胞类型。
更新日期:2024-10-15
down
wechat
bug