当前位置:
X-MOL 学术
›
Remote Sens. Environ.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Innovative hybrid algorithm for simultaneous land surface temperature and emissivity retrieval: Case study with SDGSAT-1 data
Remote Sensing of Environment ( IF 11.1 ) Pub Date : 2024-10-14 , DOI: 10.1016/j.rse.2024.114449 Mengmeng Wang, Guojin He, Tian Hu, Mingsi Yang, Zhengjia Zhang, Zhaoming Zhang, Guizhou Wang, Hua Li, Wei Gao, Xiuguo Liu
Remote Sensing of Environment ( IF 11.1 ) Pub Date : 2024-10-14 , DOI: 10.1016/j.rse.2024.114449 Mengmeng Wang, Guojin He, Tian Hu, Mingsi Yang, Zhengjia Zhang, Zhaoming Zhang, Guizhou Wang, Hua Li, Wei Gao, Xiuguo Liu
The split-window (SW) and temperature-and-emissivity separation (TES) algorithms have been widely used for land surface temperature (LST) estimation from thermal infrared (TIR) observations for various missions. However, the SW algorithm requires prior estimates of land surface emissivity (LSE). The TES algorithm encompasses an atmospheric correction module, which increases the complexity and uncertainty of operational LST retrieval. To address this, we proposed a split-window-driven temperature-and-emissivity separation (SWDTES) algorithm in this study to estimate LST and LSE simultaneously without the need of atmospheric correction by combining the respective advantages of SW and TES. The inputs to the SWDTES algorithm are largely simplified, which only requires atmospheric water vapor content (AWVC) apart from the top-of-atmosphere TIR radiance. The developed SWDTES algorithm was applied to the high spatial resolution Thermal Infrared Spectrometer (TIS) data from the newly launched Sustainable Development Science Satellite-1 (SDGSAT-1) mission, and its performance was assessed using the MODIS data and ground measurements. The cross validation shows that the correlation coefficient (r ), bias and root mean square error (RMSE) between MODIS-converted LSE and retrieved LSE using the SWDTES algorithm for the nighttime case is 0.904, −0.033 and 0.038 for band 1; 0.677, −0.008 and 0.014 for band 2; and 0.576, −0.000 and 0.008 for band 3, indicating a good consistency between the two LSE estimates. In addition, the evaluation using ground measurements shows that the r , bias and RMSE between the in-situ LST and retrieved LST using the SWDTES algorithm are 0.99, −0.67 K and 2.10 K, respectively. Compared to the OSW and TES algorithms, the SWDTES algorithm reduces the RMSE by 0.34 K and 0.90 K, respectively, indicating an improvement in LST retrieval accuracy. We conclude that the proposed SWDTES algorithm can achieve high-accuracy and high-resolution LST retrieval from the SDGSAT-1 mission, supporting fine-scale applications in energy, water, and carbon cycle modeling.
中文翻译:
用于同步地表温度和发射率检索的创新混合算法:SDGSAT-1 数据的案例研究
分离窗口 (SW) 和温度-发射率分离 (TES) 算法已广泛用于各种任务的热红外 (TIR) 观测的地表温度 (LST) 估计。但是,SW 算法需要对地表发射率 (LSE) 进行事先估计。TES 算法包含一个大气校正模块,这增加了操作 LST 检索的复杂性和不确定性。为了解决这个问题,我们在本研究中提出了一种分窗驱动的温度和发射率分离 (SWDTES) 算法,通过结合 SW 和 TES 各自的优点,无需大气校正即可同时估计 LST 和 LSE。SWDTES 算法的输入在很大程度上得到了简化,除了大气顶部的 TIR 辐射外,只需要大气水蒸气含量 (AWVC)。将开发的 SWDTES 算法应用于新发射的可持续发展科学卫星 1 号 (SDGSAT-1) 任务的高空间分辨率热红外光谱仪 (TIS) 数据,并使用 MODIS 数据和地面测量评估其性能。交叉验证表明,对于夜间情况,MODIS 转换的 LSE 与使用 SWDTES 算法检索的 LSE 之间的相关系数 (r) 、偏差和均方根误差 (RMSE) 分别为 0.904、-0.033 和 0.038(波段 1);波段 2 为 0.677、-0.008 和 0.014;以及 0.576、-0.000 和 0.008 的 3 分,表明两个 LSE 估计值之间具有良好的一致性。此外,使用地面测量的评估表明,原位 LST 和使用 SWDTES 算法检索的 LST 之间的 r、bias 和 RMSE 分别为 0.99、−0.67 K 和 2.10 K。与 OSW 和 TES 算法相比,SWDTES 算法将 RMSE 降低 0。分别为 34 K 和 0.90 K,表明 LST 检索精度有所提高。我们得出结论,所提出的 SWDTES 算法可以从 SDGSAT-1 任务中实现高精度和高分辨率的 LST 检索,支持能源、水和碳循环建模中的精细应用。
更新日期:2024-10-14
中文翻译:
用于同步地表温度和发射率检索的创新混合算法:SDGSAT-1 数据的案例研究
分离窗口 (SW) 和温度-发射率分离 (TES) 算法已广泛用于各种任务的热红外 (TIR) 观测的地表温度 (LST) 估计。但是,SW 算法需要对地表发射率 (LSE) 进行事先估计。TES 算法包含一个大气校正模块,这增加了操作 LST 检索的复杂性和不确定性。为了解决这个问题,我们在本研究中提出了一种分窗驱动的温度和发射率分离 (SWDTES) 算法,通过结合 SW 和 TES 各自的优点,无需大气校正即可同时估计 LST 和 LSE。SWDTES 算法的输入在很大程度上得到了简化,除了大气顶部的 TIR 辐射外,只需要大气水蒸气含量 (AWVC)。将开发的 SWDTES 算法应用于新发射的可持续发展科学卫星 1 号 (SDGSAT-1) 任务的高空间分辨率热红外光谱仪 (TIS) 数据,并使用 MODIS 数据和地面测量评估其性能。交叉验证表明,对于夜间情况,MODIS 转换的 LSE 与使用 SWDTES 算法检索的 LSE 之间的相关系数 (r) 、偏差和均方根误差 (RMSE) 分别为 0.904、-0.033 和 0.038(波段 1);波段 2 为 0.677、-0.008 和 0.014;以及 0.576、-0.000 和 0.008 的 3 分,表明两个 LSE 估计值之间具有良好的一致性。此外,使用地面测量的评估表明,原位 LST 和使用 SWDTES 算法检索的 LST 之间的 r、bias 和 RMSE 分别为 0.99、−0.67 K 和 2.10 K。与 OSW 和 TES 算法相比,SWDTES 算法将 RMSE 降低 0。分别为 34 K 和 0.90 K,表明 LST 检索精度有所提高。我们得出结论,所提出的 SWDTES 算法可以从 SDGSAT-1 任务中实现高精度和高分辨率的 LST 检索,支持能源、水和碳循环建模中的精细应用。