npj Computational Materials ( IF 9.4 ) Pub Date : 2024-10-08 , DOI: 10.1038/s41524-024-01429-w Tao Zhang, Hao Guo, Jiao Shen, Ying Liang, Haidong Fan, Wentao Jiang, Qingyuan Wang, Xiaobao Tian
Two-dimensional (2D) multiferroic materials are recognized as promising candidates for next-generation nanodevices due to their tunable magnetoelectric coupling and distinctive physical phenomena. In this study, we proposed a novel 2D multiferroic van der Waals heterostructure (vdWH) by stacking atomic layers of ferroelectric In2Se3 and ferromagnetic MnI3. Using first-principles calculations, we found that the MnI3/In2Se3 vdWH exhibit robust metallic conductivity across various spin and polarization states, preserving the distinctive band characteristics of isolated In2Se3 and MnI3. However, the alignment of Fermi levels causes the conduction band minimum (CBM) and valence band maximum (VBM) of In2Se3 and MnI3 to shift relative to their original band structures. Remarkably, the MnI3/In2Se3 with the upward polarization state of In2Se3 exhibits an Ohmic contact. Switching the polarization direction of In2Se3 from upward to downward can transform the MnI3/In2Se3 vdWH from an Ohmic contact to a p-type Schottky contact, while also modifying its dipole moment, magnetic strength and direction. Based on these properties of MnI3/In2Se3 vdWH, we designed the field-effect transistors (FETs) with high on/off rates and nonvolatile data storage device. Furthermore, the Schottky barrier heights (SBHs), magnetic moment, and dipole moment of MnI3/In2Se3 vdWH can also be effectively regulated by reducing the interlayer distance. With the continuous reduction of the interlayer distance of MnI3/In2Se3 vdWH, its easy magnetization axis is expected to shift from in-plane to out-of-plane. These findings offer new insights for the design and development of the next-generation spintronic and nonvolatile memory nanodevices.
中文翻译:
由 MnI3/In2Se3 多铁异质结构的铁电极化反转驱动的可调谐肖特基势垒和磁电耦合
二维 (2D) 多铁材料因其可调磁电耦合和独特的物理现象而被公认为下一代纳米器件的有前途的候选者。在这项研究中,我们通过堆叠铁电 In2Se3 和铁磁 MnI3 的原子层,提出了一种新的二维多铁范德华异质结构 (vdWH)。使用第一性原理计算,我们发现 MnI3/In2Se3 vdWH 在各种自旋和极化态中表现出强大的金属导电性,保留了孤立的 In2Se3 和 MnI3 的独特能带特性。然而,费米能级的对齐导致 In2Se3 和 MnI3 的导带最小值 (CBM) 和价带最大值 (VBM) 相对于其原始能带结构发生偏移。值得注意的是,具有 In2Se3 向上极化态的 MnI3/In2Se3 表现出欧姆接触。将 In2Se3 的极化方向从向上切换到向下,可以将 MnI3/In2Se3 vdWH 从欧姆触点转变为 p 型肖特基触点,同时还可以改变其偶极矩、磁强度和方向。基于 MnI3/In2Se3 vdWH 的这些特性,我们设计了具有高开/关速率和非易失数据存储器件的场效应晶体管 (FET)。此外,通过减小层间距离,还可以有效调节 MnI3/In2Se3 vdWH 的肖特基势垒高度 (SBHs)、磁矩和偶极矩。 随着 MnI3/In2Se3 vdWH 层间距离的不断减小,其易磁化轴有望从面内转移到面外。这些发现为下一代自旋电子和非易失性存储器纳米器件的设计和开发提供了新的见解。