当前位置:
X-MOL 学术
›
Crit. Care
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Phenotypes based on respiratory drive and effort to identify the risk factors when P0.1 fails to estimate ∆PES in ventilated children
Critical Care ( IF 8.8 ) Pub Date : 2024-10-04 , DOI: 10.1186/s13054-024-05103-x Meryl Vedrenne-Cloquet, Y. Ito, J. Hotz, M. J. Klein, M. Herrera, D. Chang, A. K. Bhalla, C. J. L. Newth, R. G. Khemani
Critical Care ( IF 8.8 ) Pub Date : 2024-10-04 , DOI: 10.1186/s13054-024-05103-x Meryl Vedrenne-Cloquet, Y. Ito, J. Hotz, M. J. Klein, M. Herrera, D. Chang, A. K. Bhalla, C. J. L. Newth, R. G. Khemani
Monitoring respiratory effort and drive during mechanical ventilation is needed to deliver lung and diaphragm protection. Esophageal pressure (∆PES) is the gold standard measure of respiratory effort but is not routinely available. Airway occlusion pressure in the first 100 ms of the breath (P0.1) is a readily available surrogate for both respiratory effort and drive but is only modestly correlated with ∆PES in children. We sought to identify risk factors for P0.1 over or underestimating ∆PES in ventilated children. Secondary analysis of physiological data from children and young adults enrolled in a randomized controlled trial testing lung and diaphragm protective ventilation in pediatric acute respiratory distress syndrome (PARDS) (NCT03266016). ∆PES (∆PES-REAL), P0.1 and predicted ∆PES (∆PES-PRED = 5.91*P0.1) were measured daily to identify phenotypes based upon the level of respiratory effort and drive: one passive (no spontaneous breathing), three where ∆PES-REAL and ∆PES-PRED were aligned (low, normal, and high effort and drive), two where ∆PES-REAL and ∆PES-PRED were mismatched (high underestimated effort, and overestimated effort). Logistic regression models were used to identify factors associated with each mismatch phenotype (High underestimated effort, or overestimated effort) as compared to all other spontaneous breathing phenotypes. We analyzed 953 patient days (222 patients). ∆PES-REAL and ∆PES-PRED were aligned in 536 (77%) of the active patient days. High underestimated effort (n = 119 (12%)) was associated with higher airway resistance (adjusted OR 5.62 (95%CI 2.58, 12.26) per log unit increase, p < 0.001), higher tidal volume (adjusted OR 1.53 (95%CI 1.04, 2.24) per cubic unit increase, p = 0.03), higher opioid use (adjusted OR 2.4 (95%CI 1.12, 5.13, p = 0.024), and lower set ventilator rate (adjusted OR 0.96 (95%CI 0.93, 0.99), p = 0.005). Overestimated effort was rare (n = 37 (4%)) and associated with higher alveolar dead space (adjusted OR 1.05 (95%CI 1.01, 1.09), p = 0.007) and lower respiratory resistance (adjusted OR 0.32 (95%CI 0.13, 0.81), p = 0.017). In patients with PARDS, P0.1 commonly underestimated high respiratory effort particularly with high airway resistance, high tidal volume, and high doses of opioids. Future studies are needed to investigate the impact of measures of respiratory effort, drive, and the presence of a mismatch phenotype on clinical outcome. Trial registration: NCT03266016; August 23, 2017.
中文翻译:
当 P0.1 无法估计通气儿童的 ∆PES 时,基于呼吸驱动和努力确定危险因素的表型
需要监测机械通气期间的呼吸努力和驱动力,以提供肺和隔膜保护。食管压 (∆PES) 是衡量呼吸努力的金标准指标,但并非常规指标。呼吸前 100 ms 的气道闭塞压 (P0.1) 是呼吸努力和驱动力的现成替代指标,但与儿童 ∆PES 仅呈适度相关性。我们试图确定通气儿童 P0.1 高估或低估 ∆PES 的危险因素。对参加一项随机对照试验的儿童和年轻人的生理数据进行二次分析,该试验测试了儿科急性呼吸窘迫综合征 (PARDS) 中的肺和隔膜保护性通气 (NCT03266016)。每天测量 ∆PES (∆PES-REAL)、P0.1 和预测的 ∆PES (∆PES-PRED = 5.91*P0.1),以根据呼吸努力和驱动水平确定表型:1 项被动(无自主呼吸),3 项 ∆PES-REAL 和 ∆PES-PRED 一致(低、正常和高努力和驱动力),2 项 ∆PES-REAL 和 ∆PES-PRED 不匹配(高低估努力和高估努力)。与所有其他自主呼吸表型相比,使用 Logistic 回归模型来确定与每种错配表型(高低估努力或高估努力)相关的因素。我们分析了 953 个患者日 (222 名患者)。∆PES-REAL 和 ∆PES-PRED 在 536 个 (77%) 的活跃患者日中保持一致。高低估的努力 (n = 119 (12%)) 与较高的气道阻力相关 (调整后的 OR 5.62 (95% CI 2.58, 12.26) 每增加对数单位,p < 0.001)、较高的潮气量 (调整后的 OR 1.53 (95% CI 1.04, 2.24) 每增加立方单位,p = 0.03),较高的阿片类药物使用(调整后的 OR 2.4 (95% CI 1.12, 5.13,p = 0.024)和较低的设定呼吸机率 (校正 OR 0.96 (95% CI 0.93,0.99),p = 0.005)。高估努力的情况很少见 (n = 37 (4%)),并且与较高的肺泡死腔 (校正 OR 1.05 (95% CI 1.01, 1.09), p = 0.007) 和较低的呼吸阻力 (校正 OR 0.32 (95% CI 0.13, 0.81), p = 0.017 相关)。在 PARDS 患者中,P0.1 通常低估了高呼吸努力,尤其是在高气道阻力、高潮气量和高剂量阿片类药物的情况下。需要进一步的研究来调查呼吸努力、驱动和错配表型的存在对临床结果的影响。试用注册:NCT03266016;八月 23, 2017.
更新日期:2024-10-05
中文翻译:
当 P0.1 无法估计通气儿童的 ∆PES 时,基于呼吸驱动和努力确定危险因素的表型
需要监测机械通气期间的呼吸努力和驱动力,以提供肺和隔膜保护。食管压 (∆PES) 是衡量呼吸努力的金标准指标,但并非常规指标。呼吸前 100 ms 的气道闭塞压 (P0.1) 是呼吸努力和驱动力的现成替代指标,但与儿童 ∆PES 仅呈适度相关性。我们试图确定通气儿童 P0.1 高估或低估 ∆PES 的危险因素。对参加一项随机对照试验的儿童和年轻人的生理数据进行二次分析,该试验测试了儿科急性呼吸窘迫综合征 (PARDS) 中的肺和隔膜保护性通气 (NCT03266016)。每天测量 ∆PES (∆PES-REAL)、P0.1 和预测的 ∆PES (∆PES-PRED = 5.91*P0.1),以根据呼吸努力和驱动水平确定表型:1 项被动(无自主呼吸),3 项 ∆PES-REAL 和 ∆PES-PRED 一致(低、正常和高努力和驱动力),2 项 ∆PES-REAL 和 ∆PES-PRED 不匹配(高低估努力和高估努力)。与所有其他自主呼吸表型相比,使用 Logistic 回归模型来确定与每种错配表型(高低估努力或高估努力)相关的因素。我们分析了 953 个患者日 (222 名患者)。∆PES-REAL 和 ∆PES-PRED 在 536 个 (77%) 的活跃患者日中保持一致。高低估的努力 (n = 119 (12%)) 与较高的气道阻力相关 (调整后的 OR 5.62 (95% CI 2.58, 12.26) 每增加对数单位,p < 0.001)、较高的潮气量 (调整后的 OR 1.53 (95% CI 1.04, 2.24) 每增加立方单位,p = 0.03),较高的阿片类药物使用(调整后的 OR 2.4 (95% CI 1.12, 5.13,p = 0.024)和较低的设定呼吸机率 (校正 OR 0.96 (95% CI 0.93,0.99),p = 0.005)。高估努力的情况很少见 (n = 37 (4%)),并且与较高的肺泡死腔 (校正 OR 1.05 (95% CI 1.01, 1.09), p = 0.007) 和较低的呼吸阻力 (校正 OR 0.32 (95% CI 0.13, 0.81), p = 0.017 相关)。在 PARDS 患者中,P0.1 通常低估了高呼吸努力,尤其是在高气道阻力、高潮气量和高剂量阿片类药物的情况下。需要进一步的研究来调查呼吸努力、驱动和错配表型的存在对临床结果的影响。试用注册:NCT03266016;八月 23, 2017.