当前位置:
X-MOL 学术
›
Prog. Mater. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Next generation phase change materials: State-of-the-art towards sustainable future
Progress in Materials Science ( IF 33.6 ) Pub Date : 2024-09-29 , DOI: 10.1016/j.pmatsci.2024.101380 B. Kalidasan, A.K. Pandey
Progress in Materials Science ( IF 33.6 ) Pub Date : 2024-09-29 , DOI: 10.1016/j.pmatsci.2024.101380 B. Kalidasan, A.K. Pandey
Phase change materials (PCMs) show promise for thermal energy storage (TES) owing to their substantial latent heat during phase transition. However, the power density and overall storage efficiency are constrained by low thermal conductivity, leakage issues and phase instability of most viable PCMs. While extensive research focuses on enhancing heat capacity, cooling power, and system integration, many innovative PCMs, including porous, silica-based, metal organic framework based PCM, photo switchable PCM, magnetically multifunctional PCM remain, bio-inspired materials, 3D printed PCM and flexible PCMs remain underexplored. This necessitates a comprehensive review to project the innovative role of PCM based on existing knowledge, identified gaps, and chart a roadmap for future research directions. This review highlights the potential of these advanced PCMs, emphasizing their application in spacecraft, photonics, paint emulsions, biomedical fields, cotton fabrics, smart packaging, and solar energy systems, while also identifying gaps and suggesting future research directions. Advanced functional PCMs are expected to efficiently facilitate thermal regulation and thermal energy storage, subsequently contributing towards sustainable energy utilization.
中文翻译:
下一代相变材料:迈向可持续未来的最先进技术
相变材料 (PCM) 在相变过程中具有大量的潜热,因此在热能存储 (TES) 方面显示出前景。然而,功率密度和整体存储效率受到大多数可用 PCM 的低导热率、泄漏问题和相位不稳定性的限制。虽然广泛的研究集中在提高热容量、冷却能力和系统集成上,但许多创新的相变材料,包括多孔、二氧化硅基、基于金属有机框架的相变材料、光开关相变材料、磁性多功能相变材料、生物启发材料、3D 打印相变材料和柔性相变材料仍未得到充分探索。这需要进行全面审查,以根据现有知识、确定的差距来预测 PCM 的创新作用,并为未来的研究方向制定路线图。本文重点介绍了这些先进相变材料的潜力,强调了它们在航天器、光子学、油漆乳液、生物医学领域、棉织物、智能包装和太阳能系统中的应用,同时也确定了差距并提出了未来的研究方向。先进的功能性相变材料有望有效地促进热调节和热能储存,从而为可持续能源利用做出贡献。
更新日期:2024-09-29
中文翻译:
下一代相变材料:迈向可持续未来的最先进技术
相变材料 (PCM) 在相变过程中具有大量的潜热,因此在热能存储 (TES) 方面显示出前景。然而,功率密度和整体存储效率受到大多数可用 PCM 的低导热率、泄漏问题和相位不稳定性的限制。虽然广泛的研究集中在提高热容量、冷却能力和系统集成上,但许多创新的相变材料,包括多孔、二氧化硅基、基于金属有机框架的相变材料、光开关相变材料、磁性多功能相变材料、生物启发材料、3D 打印相变材料和柔性相变材料仍未得到充分探索。这需要进行全面审查,以根据现有知识、确定的差距来预测 PCM 的创新作用,并为未来的研究方向制定路线图。本文重点介绍了这些先进相变材料的潜力,强调了它们在航天器、光子学、油漆乳液、生物医学领域、棉织物、智能包装和太阳能系统中的应用,同时也确定了差距并提出了未来的研究方向。先进的功能性相变材料有望有效地促进热调节和热能储存,从而为可持续能源利用做出贡献。