当前位置:
X-MOL 学术
›
Case Stud. Therm. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Numerical modeling of thermophoresis and Brownian with heat transfer in shear-rate-dependent fluid: The finite element simulations
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-09-17 , DOI: 10.1016/j.csite.2024.105139 M. Nawaz, Basit Ali, SayerObaid Alharbi, A.S. Shflot, M.Y. Malik, Abdelatif Salmi
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-09-17 , DOI: 10.1016/j.csite.2024.105139 M. Nawaz, Basit Ali, SayerObaid Alharbi, A.S. Shflot, M.Y. Malik, Abdelatif Salmi
This article discusses the simultaneous influence of thermophoresis, Brownian motion, and the dispersion of nanoparticles on thermal enhancement in non-Newtonian fluid existing over a surface stretching with non-uniform velocity. The modeled problems describing the transport of heat by the fluid are boundary value problems and are solved by the finite element method (FEM). The mesh-free analysis is done and accuracy is checked. The numerical solutions are computed and used for depicting flow field behaviors. It is visualized that C u − Prandtl fluid and C u − A l 2 O 3 − Prandtl fluid flow are affected in opposing ways by Prandtl and elastic factors. As a result, momentum in the Newtonian fluid does not penetrate as quickly as that does in Prandtl fluid. The Brownian motion parameter is responsible for a decrease in the Nusselt number whereas the thermophoresis parameter causes a decrease in the Sherwood number. Thus, it is essential to note that the wall heat transfer rate in the fluid can be enhanced by making arrangements to reduce Brownian motion. Similarly, wall mass flux can be controlled through the thermophoresis parameter. Nusselt and Sherwood number has shown an increasing tendency when the Prandtl parameter is increased. Thus, fluids with higher Prandtl fluid parameters are suitable for higher wall heat and mass fluxes. The temperature of mono and hybrid nano-Prandtl fluids is increased by caused by thermophoresis and Brownian motion.
中文翻译:
剪切率相关流体中热泳和布朗传热的数值模拟:有限元模拟
本文讨论了热泳、布朗运动和纳米颗粒分散对存在于非均匀速度拉伸表面的非牛顿流体中的热增强的同时影响。描述流体传热的建模问题是边值问题,并通过有限元法 (FEM) 求解。完成无网格分析并检查准确性。计算数值解并用于描述流场行为。可以看出,Cu− Prandtl 流体和 Cu−Al2O3− Prandtl 流体流动受到 Prandtl 和弹性因子以相反的方式影响。因此,牛顿流体中的动量渗透速度不如普朗特流体中的快。布朗运动参数导致努塞尔数减少,而热泳参数导致舍伍德数减少。因此,必须注意的是,可以通过减少布朗运动的安排来提高流体中的壁传热率。类似地,壁质量通量可以通过热泳参数来控制。当普朗特参数增大时,努塞尔数和舍伍德数呈现增大趋势。因此,具有较高普朗特流体参数的流体适用于较高的壁热和质量通量。单一和混合纳米普朗特流体的温度因热泳和布朗运动而升高。
更新日期:2024-09-17
中文翻译:
剪切率相关流体中热泳和布朗传热的数值模拟:有限元模拟
本文讨论了热泳、布朗运动和纳米颗粒分散对存在于非均匀速度拉伸表面的非牛顿流体中的热增强的同时影响。描述流体传热的建模问题是边值问题,并通过有限元法 (FEM) 求解。完成无网格分析并检查准确性。计算数值解并用于描述流场行为。可以看出,Cu− Prandtl 流体和 Cu−Al2O3− Prandtl 流体流动受到 Prandtl 和弹性因子以相反的方式影响。因此,牛顿流体中的动量渗透速度不如普朗特流体中的快。布朗运动参数导致努塞尔数减少,而热泳参数导致舍伍德数减少。因此,必须注意的是,可以通过减少布朗运动的安排来提高流体中的壁传热率。类似地,壁质量通量可以通过热泳参数来控制。当普朗特参数增大时,努塞尔数和舍伍德数呈现增大趋势。因此,具有较高普朗特流体参数的流体适用于较高的壁热和质量通量。单一和混合纳米普朗特流体的温度因热泳和布朗运动而升高。