当前位置: X-MOL 学术npj Comput. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Machine-learned coarse-grained potentials for particles with anisotropic shapes and interactions
npj Computational Materials ( IF 9.4 ) Pub Date : 2024-09-28 , DOI: 10.1038/s41524-024-01405-4
Gerardo Campos-Villalobos, Rodolfo Subert, Giuliana Giunta, Marjolein Dijkstra

Computational investigations of biological and soft-matter systems governed by strongly anisotropic interactions typically require resource-demanding methods such as atomistic simulations. However, these techniques frequently prove to be prohibitively expensive for accessing the long-time and large-length scales inherent to such systems. Conversely, coarse-grained models offer a computationally efficient alternative. Nonetheless, models of this type have seldom been developed to accurately represent anisotropic or directional interactions. In this work, we introduce a straightforward bottom-up, data-driven approach for constructing single-site coarse-grained potentials suitable for particles with arbitrary shapes and highly directional interactions. Our method for constructing these coarse-grained potentials relies on particle-centered descriptors of local structure that effectively encode dependencies on rotational degrees of freedom in the interactions. By using these descriptors as regressors in a linear model and employing a simple feature selection scheme, we construct single-site coarse-grained potentials for particles with anisotropic interactions, including surface-patterned particles and colloidal superballs in the presence of non-adsorbing polymers. We validate the efficacy of our models by accurately capturing the intricacies of the potential-energy surfaces from the underlying fine-grained models. Additionally, we demonstrate that this simple approach can accurately represent the contact function (shape) of non-spherical particles, which may be leveraged to construct continuous potentials suitable for large-scale simulations.



中文翻译:


具有各向异性形状和相互作用的粒子的机器学习粗粒度势



对受强各向异性相互作用控制的生物和软物质系统的计算研究通常需要资源要求较高的方法,例如原子模拟。然而,这些技术经常被证明对于访问此类系统固有的长时间和大长度尺度来说过于昂贵。相反,粗粒度模型提供了一种计算高效的替代方案。尽管如此,这种类型的模型很少被开发来准确地表示各向异性或方向性相互作用。在这项工作中,我们引入了一种简单的自下而上、数据驱动的方法,用于构建适用于具有任意形状和高度定向相互作用的粒子的单点粗粒势。我们构建这些粗粒度势的方法依赖于局部结构的粒子中心描述符,该描述符有效地编码了相互作用中旋转自由度的依赖性。通过使用这些描述符作为线性模型中的回归量并采用简单的特征选择方案,我们构建了具有各向异性相互作用的颗粒的单点粗粒势,包括非吸附聚合物存在下的表面图案颗粒和胶体超级球。我们通过从底层细粒度模型中准确捕获势能表面的复杂性来验证模型的有效性。此外,我们证明这种简单的方法可以准确地表示非球形粒子的接触函数(形状),这可以用来构建适合大规模模拟的连续势。

更新日期:2024-09-28
down
wechat
bug