Philosophical Studies ( IF 1.1 ) Pub Date : 2024-09-19 , DOI: 10.1007/s11098-024-02191-x Gustaf Arrhenius, H. Orri Stefánsson
Parfit (Theoria 82:110–127, 2016) responded to the Sequence Argument for the Repugnant Conclusion by introducing imprecise equality. However, Parfit’s notion of imprecise equality lacked structure. Hájek and Rabinowicz (2022) improved on Parfit’s proposal in this regard, by introducing a notion of degrees of incommensurability. Although Hájek and Rabinowicz’s proposal is a step forward, and may help solve many paradoxes, it can only avoid the Repugnant Conclusion at great cost. First, there is a sequential argument for the Repugnant Conclusion that uses weaker and intuitively more compelling assumptions than the Sequence Argument, and which Hájek and Rabinowicz’s proposal only undermines, in a principled way, by allowing for implausible weight to be put on the disvalue of inequality. Second, if Hájek and Rabinowicz do put such implausible weight on the disvalue of inequality, then they will have to accept that a population A is not worse than another same sized population B even though everyone in B is better off than anyone in A.
中文翻译:
不可通约性、序列论证和帕累托原理
帕菲特(Theoria 82:110–127, 2016)通过引入不精确的等式来回应令人反感的结论的序列论证。然而,帕菲特的不精确平等概念缺乏结构。 Hájek 和 Rabinowicz(2022)通过引入不可通约程度的概念,改进了帕菲特在这方面的提议。哈耶克和拉比诺维奇的提议虽然向前迈出了一步,可能有助于解决许多悖论,但只能付出巨大的代价才能避免令人反感的结论。首先,令人反感的结论有一个序列论证,它使用了比序列论证更弱、直观上更令人信服的假设,而哈耶克和拉比诺维奇的提议只是在原则上破坏了这一点,因为允许对不等式。其次,如果哈耶克和拉比诺维奇确实对不平等的贬值给予了如此令人难以置信的重视,那么他们将不得不接受人口 A 并不比另一个相同规模的人口 B 差,尽管 B 中的每个人都比 A 中的任何人都好。