当前位置:
X-MOL 学术
›
Case Stud. Therm. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Effects of oscillation on convective thermal flow in a vertical enclosure filled by nanofluid particles
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-09-16 , DOI: 10.1016/j.csite.2024.105133 Afraz Hussain Majeed, Rashid Mahmood, Dong Liu, Yongchao Zhang, Jia Yin Zhang, Huan Yi Ren, Ahmed S. Hendy, Mohamed R. Ali
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-09-16 , DOI: 10.1016/j.csite.2024.105133 Afraz Hussain Majeed, Rashid Mahmood, Dong Liu, Yongchao Zhang, Jia Yin Zhang, Huan Yi Ren, Ahmed S. Hendy, Mohamed R. Ali
In this work, we numerically explore all possible ways to improve heat transmission in a sinusoidal cavity with oxide nanoparticle suspensions in liquid. Engineers aim to improve thermal efficiency in their designs by incorporating an inclined magnetic field into prospective flow configurations. One of the most important advances is the utilization of sinusoidal walls, which significantly improve thermal efficiency. A significant step forward in comprehending thermal management in enclosures filled with nanofluids has been made possible by computational analysis facilitated by finite element analysis. An approximation of the velocity and temperature is provided by the Ladyzhenskaya-Babuska—Brezzi (LBB)-stable element, which is utilized to deliver this information. The accuracy of the computational study has been verified by comparing them to their equivalents in the previous research. It has been demonstrated through the findings that the rate of heat transfer and the kinetic energy are both higher when the volume concentration is lower. Furthermore, in the absence of a magnetic field, the Nusselt number is 7 % higher, and the kinetic energy is 1.89 times bigger for ϕ = 2 % compared to ϕ = 8 % for k = 0.2. Similarly, the KE decreases when there is an increase in the ϕ. Furthermore, a magnetic field has a detrimental effect on their values. As a result, both the fluid flow velocity and the temperature properties decline with increasing Hartmann numbers. These observations play a major role in the development of energy-efficient applications and optimized heat transfer systems, establishing a novel standard for thermal management approaches in real-world engineering scenarios.
中文翻译:
振荡对纳米流体颗粒填充的垂直外壳中对流热流的影响
在这项工作中,我们以数值方式探索了使用液体中的氧化物纳米颗粒悬浮液来改善正弦腔内传热的所有可能方法。工程师的目标是通过将倾斜磁场纳入预期的流动配置来提高设计中的热效率。最重要的进步之一是正弦壁的利用,它显着提高了热效率。通过有限元分析促进的计算分析,在理解填充纳米流体的外壳的热管理方面向前迈出了重要一步。 Ladyzhenskaya-Babuska-Brezzi (LBB) 稳定元件提供了速度和温度的近似值,该元件用于传递此信息。通过将它们与之前研究中的等效项进行比较,验证了计算研究的准确性。研究结果表明,当体积浓度较低时,传热速率和动能均较高。此外,在没有磁场的情况下,与 k = 0.2 时的 8% 相比,当 2% 时,努塞尔数高出 7%,动能大 1.89 倍。类似地,当 phi 增加时,KE 减少。此外,磁场对其值有不利影响。因此,流体流速和温度特性都随着哈特曼数的增加而下降。这些观察结果在节能应用和优化传热系统的开发中发挥着重要作用,为现实工程场景中的热管理方法建立了新的标准。
更新日期:2024-09-16
中文翻译:
振荡对纳米流体颗粒填充的垂直外壳中对流热流的影响
在这项工作中,我们以数值方式探索了使用液体中的氧化物纳米颗粒悬浮液来改善正弦腔内传热的所有可能方法。工程师的目标是通过将倾斜磁场纳入预期的流动配置来提高设计中的热效率。最重要的进步之一是正弦壁的利用,它显着提高了热效率。通过有限元分析促进的计算分析,在理解填充纳米流体的外壳的热管理方面向前迈出了重要一步。 Ladyzhenskaya-Babuska-Brezzi (LBB) 稳定元件提供了速度和温度的近似值,该元件用于传递此信息。通过将它们与之前研究中的等效项进行比较,验证了计算研究的准确性。研究结果表明,当体积浓度较低时,传热速率和动能均较高。此外,在没有磁场的情况下,与 k = 0.2 时的 8% 相比,当 2% 时,努塞尔数高出 7%,动能大 1.89 倍。类似地,当 phi 增加时,KE 减少。此外,磁场对其值有不利影响。因此,流体流速和温度特性都随着哈特曼数的增加而下降。这些观察结果在节能应用和优化传热系统的开发中发挥着重要作用,为现实工程场景中的热管理方法建立了新的标准。