当前位置: X-MOL 学术J. Mech. Phys. Solids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electroactive differential growth and delayed instability in accelerated healing tissues
Journal of the Mechanics and Physics of Solids ( IF 5.0 ) Pub Date : 2024-09-19 , DOI: 10.1016/j.jmps.2024.105867
Yafei Wang, Zhanfeng Li, Xingmei Chen, Yun Tan, Fucheng Wang, Yangkun Du, Yunce Zhang, Yipin Su, Fan Xu, Changguo Wang, Weiqiu Chen, Ji Liu

Guided by experiments contrasting electrically accelerated recovery with natural healing, this study formulates a model to investigate the importance of electroactive differential growth and morphological changes in tissue repair. It underscores the clinical potential of leveraging electroactive differential growth for improved healing outcomes. The study reveals that voltage stimulation significantly enhances the healing and growth of biological tissues, accelerating the regeneration process across various growth modalities and steering towards isotropic growth conditions that do not favor any specific growth pathways. Enhancing the electroelastic coupling parameters improves the efficacy of bioelectric devices, initiating contraction and fortification of biological tissues in alignment with the electric field. This process facilitates swift cell migration and proliferation, as well as oriented growth of tissue. In instances of strain stiffening at elevated strains, the extreme critical growth ratio aligns with the predictions of neo-Hookean models. Conversely, for tissues experiencing strain stiffening under moderate to very low strain conditions, the strain stiffening effect substantially delays the onset of electroelastic growth instability, ultimately producing a smooth, hyperelastic surface devoid of any unstable morphologies. Our investigation, grounded in nonlinear electroelastic field and perturbation theories, explores how electric fields influence differential growth and instability in biological tissues. We examine the interactions among dimensionless voltage, internal pressure, electroelastic coupling, radius ratio, and strain stiffening, revealing their effects on promoting growth and delaying instability. This framework offers insights into the mechanisms behind electroactive growth and its instabilities, contributing valuable knowledge to the tissue healing.

中文翻译:


加速愈合组织中的电活性差异生长和延迟不稳定性



在对比电加速恢复与自然愈合的实验指导下,本研究制定了一个模型来研究组织修复中电活性差异生长和形态变化的重要性。它强调了利用电活性差异生长来改善愈合结果的临床潜力。研究表明,电压刺激显着增强生物组织的愈合和生长,加速各种生长模式的再生过程,并转向不利于任何特定生长途径的各向同性生长条件。增强电弹性耦合参数可提高生物电装置的功效,根据电场启动生物组织的收缩和强化。这个过程促进细胞快速迁移和增殖,以及组织的定向生长。在高应变下应变硬化的情况下,极端临界生长比与新胡克模型的预测一致。相反,对于在中等至极低应变条件下经历应变硬化的组织,应变硬化效应大大延迟了电弹性生长不稳定性的发生,最终产生没有任何不稳定形态的光滑超弹性表面。我们的研究以非线性电弹性场和微扰理论为基础,探索电场如何影响生物组织的差异生长和不稳定性。我们研究了无量纲电压、内部压力、电弹性耦合、半径比和应变刚化之间的相互作用,揭示了它们对促进生长和延迟不稳定的影响。 该框架提供了对电活性生长及其不稳定性背后机制的见解,为组织愈合贡献了宝贵的知识。
更新日期:2024-09-19
down
wechat
bug