Genome Biology ( IF 10.1 ) Pub Date : 2024-09-04 , DOI: 10.1186/s13059-024-03378-5 Kai Zhao 1 , Hon-Cheong So 2, 3, 4, 5, 6, 7 , Zhixiang Lin 1
Publisher Correction: Genome Biol 25, 223 (2024)
https://doi.org/10.1186/s13059-024-03345-0
Following publication of the original article [1], the authors identified a typesetting error in Eq. 3, 4 and 10, as well as in Algorithm 1 equation. An erroneous “ll” was typeset at the start of the equations.
The incorrect and corrected versions are published in this correction article.
Incorrect equation (3)
$$\left\{ \begin{array}{ll} ll\mathcal{L}(d, p, v, s, g) = & \frac{1}{2} \sum\nolimits_{i,m} \left( z_{i,m} - d_{j}^{\mathsf{T}} v_{m} - p_{t}^{\mathsf{T}} v_{m} - s_{i}^{\mathsf{T}} g_{m} \right)^{2} +\\ & \frac{1}{2} \lambda_{1} \left( \sum\nolimits_{j} \| d_{j} \|^{2}_{2} + \sum\nolimits_{t} \| d_{t} \|^{2}_{2} + \sum\nolimits_{m} \| v_{m} \|^{2}_{2}\right) +\\ & \lambda_{2} \left( \frac{1}{2} (1-\alpha) \sum\nolimits_{i} \|s_{i}\|_{2}^{2} + \alpha \sum\nolimits_{i}|s_{i}|_{1} \right),\\ \text{subject to} & \sum\nolimits_{m} g_{mk}^{2} \leq c, \forall k = 1, \ldots, K_{2}. \end{array}\right.$$(3)Correct equation (3)
$$\left\{ \begin{array}{ll}\mathcal{L}(d, p, v, s, g) = & \frac{1}{2} \sum\nolimits_{i,m} \left( z_{i,m} - d_{j}^{\mathsf{T}} v_{m} - p_{t}^{\mathsf{T}} v_{m} - s_{i}^{\mathsf{T}} g_{m} \right)^{2} +\\ & \frac{1}{2} \lambda_{1} \left( \sum\nolimits_{j} \| d_{j} \|^{2}_{2} + \sum\nolimits_{t} \| d_{t} \|^{2}_{2} + \sum\nolimits_{m} \| v_{m} \|^{2}_{2}\right) +\\ & \lambda_{2} \left( \frac{1}{2} (1-\alpha) \sum\nolimits_{i} \|s_{i}\|_{2}^{2} + \alpha \sum\nolimits_{i}|s_{i}|_{1} \right),\\ \text{subject to} & \sum\nolimits_{m} g_{mk}^{2} \leq c, \forall k = 1, \ldots, K_{2}. \end{array}\right.$$(3)Incorrect equation (4)
$$\left\{ \begin{array}{ll} ll \mathcal{L}(D, P, V, S, G) = & \frac{1}{2} \left\| Z - \left(X^{D} D + X^{P}P\right) V - SG\right\|_{\text{F}}^{2}+\\ & \frac{1}{2} \lambda_{1} \left( \|D\|^{2}_{\text{F}} + \|P\|^{2}_{\text{F}} + \|V\|^{2}_{\text{F}}\right) + \\ & \lambda_{2} \left[ \frac{1}{2} (1 - \alpha) \| S \|^{2}_{\text{F}} + \alpha\|S\|_{1}\right] \\ \text{subject to} & \left\| G_{2} \right\|_{2}^{2} \leq c, \forall k = 1, \ldots, K_{2}, \end{array}\right.$$(4)Correct equation (4)
$$\left\{ \begin{array}{ll}\mathcal{L}(D, P, V, S, G) = & \frac{1}{2} \left\| Z - \left(X^{D} D + X^{P}P\right) V - SG\right\|_{\text{F}}^{2}+\\ & \frac{1}{2} \lambda_{1} \left( \|D\|^{2}_{\text{F}} + \|P\|^{2}_{\text{F}} + \|V\|^{2}_{\text{F}}\right) + \\ & \lambda_{2} \left[ \frac{1}{2} (1 - \alpha) \| S \|^{2}_{\text{F}} + \alpha\|S\|_{1}\right] \\ \text{subject to} & \left\| G_{2} \right\|_{2}^{2} \leq c, \forall k = 1, \ldots, K_{2}, \end{array}\right.$$(4)Incorrect equation (10)
$$\left\{ \begin{array}{ll} ll\mathcal{L}(V, G) = & \frac{1}{2k} \sum\nolimits_{j=1}^{k} \left\| Z_{I_{j}} - \left( X_{I_{j}}^{D} D_{I_{j}} + X_{I_{j}}^{P} P_{I_{j}} \right) V - S_{I_{j}} G\right\|^{2}_{F} +\\ & \frac{1}{2} \lambda_{1} \left[ \frac{1}{k} \sum\nolimits_{j=1}^{k} \left(\left\| D_{I_{j}} \right\|^{2}_{\text{F}} + \left\| P_{I_{j}} \right\|^{2}_{F}\right) + \|V\|^{2}_{F}\right] + \\ & \frac{1}{k} \sum\nolimits_{j=1}^{k} \lambda_{2} \left[ \frac{1}{2} (1 - \alpha) \left\| S_{I_{j}} \right\|^{2}_{F} + \alpha \left\| S_{I_{j}} \right\|_{2} \right] , \\ \text{subject to} & \|G_{k}\|^{2}_{2} \leq c, \forall k = 1,\ldots, K_{2}.\end{array}\right.$$(10)Correct equation (10)
$$\left\{ \begin{array}{ll} \mathcal{L}(V, G) = & \frac{1}{2k} \sum\nolimits_{j=1}^{k} \left\| Z_{I_{j}} - \left( X_{I_{j}}^{D} D_{I_{j}} + X_{I_{j}}^{P} P_{I_{j}} \right) V - S_{I_{j}} G\right\|^{2}_{F} +\\ & \frac{1}{2} \lambda_{1} \left[ \frac{1}{k} \sum\nolimits_{j=1}^{k} \left(\left\| D_{I_{j}} \right\|^{2}_{\text{F}} + \left\| P_{I_{j}} \right\|^{2}_{F}\right) + \|V\|^{2}_{F}\right] + \\ & \frac{1}{k} \sum\nolimits_{j=1}^{k} \lambda_{2} \left[ \frac{1}{2} (1 - \alpha) \left\| S_{I_{j}} \right\|^{2}_{F} + \alpha \left\| S_{I_{j}} \right\|_{2} \right] , \\ \text{subject to} & \|G_{k}\|^{2}_{2} \leq c, \forall k = 1,\ldots, K_{2}.\end{array}\right.$$(10)Incorrect Algorithm 1
$$\left\{ \begin{array}{ll} ll A_{k} \leftarrow & A_{k-1} - \left( X_{I_{k}}^{D} D^{\prime}_{k} + X_{I_{k}}^{P} P^{\prime}_{k} \right)^{\mathsf{T}} \left( X_{I_{k}}^{D} D^{\prime}_{k} + X_{I_{k}}^{P} P^{\prime}_{k} \right) \\ B_{k} \leftarrow & B_{k-1} - \tilde{Z}^{\prime^{\mathsf{T}}}_{I_{k}} \left( X_{I_{k}}^{D} D^{\prime}_{k} + X_{I_{k}}^{P} P^{\prime}_{k} \right) \\ E_{k} \leftarrow & E_{k-1} - S^{\prime}_{I_{k}} {}^{\mathsf{T}} S^{\prime}_{I_{k}}\\ F_{k} \leftarrow & F_{k-1} - Z^{\prime}_{I_{k}} {}^{\mathsf{T}} S^{\prime}_{I_{k}}.\end{array}\right.$$
Correct Algorithm 1
$$\left\{ \begin{array}{ll}A_{k} \leftarrow & A_{k-1} - \left( X_{I_{k}}^{D} D^{\prime}_{k} + X_{I_{k}}^{P} P^{\prime}_{k} \right)^{\mathsf{T}} \left( X_{I_{k}}^{D} D^{\prime}_{k} + X_{I_{k}}^{P} P^{\prime}_{k} \right) \\ B_{k} \leftarrow & B_{k-1} - \tilde{Z}^{\prime^{\mathsf{T}}}_{I_{k}} \left( X_{I_{k}}^{D} D^{\prime}_{k} + X_{I_{k}}^{P} P^{\prime}_{k} \right) \\ E_{k} \leftarrow & E_{k-1} - S^{\prime}_{I_{k}} {}^{\mathsf{T}} S^{\prime}_{I_{k}}\\ F_{k} \leftarrow & F_{k-1} - Z^{\prime}_{I_{k}} {}^{\mathsf{T}} S^{\prime}_{I_{k}}.\end{array}\right.$$The original article [1] is corrected.
Zhao K, So HC, Lin Z. scParser: sparse representation learning for scalable single-cell RNA sequencing data analysis. Genome Biol. 2024;25:223. https://doi.org/10.1186/s13059-024-03345-0.
Article PubMed PubMed Central Google Scholar
Download references
Authors and Affiliations
Department of Statistics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
Kai Zhao & Zhixiang Lin
School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
Hon-Cheong So
KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology and The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
Hon-Cheong So
Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
Hon-Cheong So
Margaret K.L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
Hon-Cheong So
Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
Hon-Cheong So
Hong Kong Branch of the Chinese Academy of Sciences Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
Hon-Cheong So
- Kai ZhaoView author publications
You can also search for this author in PubMed Google Scholar
- Hon-Cheong SoView author publications
You can also search for this author in PubMed Google Scholar
- Zhixiang LinView author publications
You can also search for this author in PubMed Google Scholar
Corresponding authors
Correspondence to Hon-Cheong So or Zhixiang Lin.
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Reprints and permissions
Cite this article
Zhao, K., So, HC. & Lin, Z. Publisher Correction: scParser: sparse representation learning for scalable single-cell RNA sequencing data analysis. Genome Biol 25, 238 (2024). https://doi.org/10.1186/s13059-024-03378-5
Download citation
Published:
DOI: https://doi.org/10.1186/s13059-024-03378-5
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative