当前位置:
X-MOL 学术
›
Soft Robot.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Multi-Degree-of-Freedom Force Sensor Incorporated into Soft Robotic Gripper for Improved Grasping Stability.
Soft Robotics ( IF 6.4 ) Pub Date : 2024-04-01 , DOI: 10.1089/soro.2023.0068 Heeju Mun 1 , David Santiago Diaz Cortes 1 , Jung-Hwan Youn 1, 2 , Ki-Uk Kyung 1
Soft Robotics ( IF 6.4 ) Pub Date : 2024-04-01 , DOI: 10.1089/soro.2023.0068 Heeju Mun 1 , David Santiago Diaz Cortes 1 , Jung-Hwan Youn 1, 2 , Ki-Uk Kyung 1
Affiliation
In recent years, soft robotic grippers have emerged as a promising solution for versatile and safe manipulation of objects in various fields. However, precise force control is critical, especially when handling delicate or fragile objects, to avoid excessive grip force application or to prevent object slippage. Herein, we propose a novel three-degree-of-freedom force sensor incorporated within a soft robotic gripper to realize stable grasping with force feedback. The proposed optical sensor employs lightweight and compact optical fibers, thereby allowing for cost-effective fabrication, and a robust sensing system that is immune to electromagnetic fields. By innervating the soft gripper with optical fibers, a durable system is achieved with the fibers functioning as a strengthening layer, thereby eliminating the need for embedding an external stiffening structure for efficient bending actuation. The innovative contact-based light loss sensing mechanism allows for a robust and stable sensing mechanism with low drift (<0.1% over 9000 cycles) that can be applied to soft pneumatic bending grippers. We used the developed sensor-incorporated soft gripper to grasp various objects, including magnetic materials, and achieved slip detection along with grip force feedback without any signal interference. Overall, this study proposes a robust measuring multi-degree-of-freedom force sensor that can be incorporated into grippers for improved grasping stability.
中文翻译:
多自由度力传感器集成到软机器人抓手中,以提高抓取稳定性。
近年来,软体机器人夹具已成为各个领域物体多功能且安全操纵的有前途的解决方案。然而,精确的力控制至关重要,特别是在处理精致或易碎物体时,以避免施加过度的握力或防止物体滑动。在此,我们提出了一种新型三自由度力传感器,集成在软机器人抓手中,以通过力反馈实现稳定抓取。所提出的光学传感器采用轻质且紧凑的光纤,从而实现具有成本效益的制造,以及不受电磁场影响的稳健传感系统。通过用光纤对软夹具进行神经支配,可以利用纤维作为加强层来实现耐用的系统,从而消除了嵌入外部加固结构以实现有效弯曲驱动的需要。创新的基于接触的光损耗传感机制可实现坚固稳定的传感机制,具有低漂移(9000 次循环后 <0.1%),可应用于软气动弯曲夹具。我们使用开发的集成传感器的软抓手来抓取包括磁性材料在内的各种物体,并在没有任何信号干扰的情况下实现滑动检测和抓力反馈。总的来说,这项研究提出了一种强大的测量多自由度力传感器,可以将其集成到夹具中以提高抓取稳定性。
更新日期:2024-04-01
中文翻译:
多自由度力传感器集成到软机器人抓手中,以提高抓取稳定性。
近年来,软体机器人夹具已成为各个领域物体多功能且安全操纵的有前途的解决方案。然而,精确的力控制至关重要,特别是在处理精致或易碎物体时,以避免施加过度的握力或防止物体滑动。在此,我们提出了一种新型三自由度力传感器,集成在软机器人抓手中,以通过力反馈实现稳定抓取。所提出的光学传感器采用轻质且紧凑的光纤,从而实现具有成本效益的制造,以及不受电磁场影响的稳健传感系统。通过用光纤对软夹具进行神经支配,可以利用纤维作为加强层来实现耐用的系统,从而消除了嵌入外部加固结构以实现有效弯曲驱动的需要。创新的基于接触的光损耗传感机制可实现坚固稳定的传感机制,具有低漂移(9000 次循环后 <0.1%),可应用于软气动弯曲夹具。我们使用开发的集成传感器的软抓手来抓取包括磁性材料在内的各种物体,并在没有任何信号干扰的情况下实现滑动检测和抓力反馈。总的来说,这项研究提出了一种强大的测量多自由度力传感器,可以将其集成到夹具中以提高抓取稳定性。