当前位置:
X-MOL 学术
›
Annu. Rev. Mar. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
New Technologies for Monitoring Coastal Ecosystem Dynamics
Annual Review of Marine Science ( IF 14.3 ) Pub Date : 2024-07-26 , DOI: 10.1146/annurev-marine-040523-020221 Kyle C Cavanaugh 1 , Tom W Bell 2 , Karen E Aerni 3 , Jarrett E K Byrnes 4 , Seth McCammon 2 , Madison M Smith 2
Annual Review of Marine Science ( IF 14.3 ) Pub Date : 2024-07-26 , DOI: 10.1146/annurev-marine-040523-020221 Kyle C Cavanaugh 1 , Tom W Bell 2 , Karen E Aerni 3 , Jarrett E K Byrnes 4 , Seth McCammon 2 , Madison M Smith 2
Affiliation
In recent years, our view of coastal ecosystems has expanded and come into greater focus. We are currently making more types of observations over larger areas and at higher frequencies than ever before. These advances are timely, as coastal ecosystems are facing increasing pressures from climate change and anthropogenic stressors. This article synthesizes recent literature on emerging technologies for coastal ecosystem monitoring, including satellite monitoring, aerial and underwater drones, in situ sensor networks, fiber optic systems, and community science observatories. We also describe how advances in artificial intelligence and deep learning underpin all these technologies by enabling insights to be drawn from increasingly large data volumes. Even with these recent advances, there are still major gaps in coastal ecosystem monitoring that must be addressed to manage coastal ecosystems during a period of accelerating global change.
中文翻译:
监测沿海生态系统动态的新技术
近年来,我们对沿海生态系统的看法得到了扩展并变得更加受到关注。我们目前正在以比以往更高的频率在更大的区域进行更多类型的观测。这些进步是及时的,因为沿海生态系统正面临来自气候变化和人为压力源的越来越大的压力。本文综合了有关沿海生态系统监测新兴技术的最新文献,包括卫星监测、空中和水下无人机、原位传感器网络、光纤系统和社区科学观测站。我们还介绍了人工智能和深度学习的进步如何通过支持从越来越大的数据量中获得见解来支撑所有这些技术。即使取得了这些最新进展,沿海生态系统监测仍然存在重大差距,在全球加速变化的时期,必须解决这些差距,以管理沿海生态系统。
更新日期:2024-07-26
中文翻译:
监测沿海生态系统动态的新技术
近年来,我们对沿海生态系统的看法得到了扩展并变得更加受到关注。我们目前正在以比以往更高的频率在更大的区域进行更多类型的观测。这些进步是及时的,因为沿海生态系统正面临来自气候变化和人为压力源的越来越大的压力。本文综合了有关沿海生态系统监测新兴技术的最新文献,包括卫星监测、空中和水下无人机、原位传感器网络、光纤系统和社区科学观测站。我们还介绍了人工智能和深度学习的进步如何通过支持从越来越大的数据量中获得见解来支撑所有这些技术。即使取得了这些最新进展,沿海生态系统监测仍然存在重大差距,在全球加速变化的时期,必须解决这些差距,以管理沿海生态系统。