当前位置: X-MOL 学术Int. J. Numer. Methods Heat Fluid Flow › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Linear stability analysis of micropolar nanofluid flow across the accelerated surface with inclined magnetic field
International Journal of Numerical Methods for Heat & Fluid Flow ( IF 4.0 ) Pub Date : 2024-07-26 , DOI: 10.1108/hff-05-2024-0372
U.S. Mahabaleshwar , S.M. Sachin , A.B. Vishalakshi , Gabriella Bognar , Bengt Ake Sunden

Purpose

The purpose of this paper is to study the two-dimensional micropolar fluid flow with conjugate heat transfer and mass transpiration. The considered nanofluid has graphene nanoparticles.

Design/methodology/approach

Governing nonlinear partial differential equations are converted to nonlinear ordinary differential equations by similarity transformation. Then, to analyze the flow, the authors derive the dual solutions to the flow problem. Biot number and radiation effect are included in the energy equation. The momentum equation was solved by using boundary conditions, and the temperature equation solved by using hypergeometric series solutions. Nusselt numbers and skin friction coefficients are calculated as functions of the Reynolds number. Further, the problem is governed by other parameters, namely, the magnetic parameter, radiation parameter, Prandtl number and mass transpiration. Graphene nanofluids have shown promising thermal conductivity enhancements due to the high thermal conductivity of graphene and have a wide range of applications affecting the thermal boundary layer and serve as coolants and thermal management systems in electronics or as heat transfer fluids in various industrial processes.

Findings

Results show that increasing the magnetic field decreases the momentum and increases thermal radiation. The heat source/sink parameter increases the thermal boundary layer. Increasing the volume fraction decreases the velocity profile and increases the temperature. Increasing the Eringen parameter increases the momentum of the fluid flow. Applications are found in the extrusion of polymer sheets, films and sheets, the manufacturing of plastic wires, the fabrication of fibers and the growth of crystals, among others. Heat sources/sinks are commonly used in electronic devices to transfer the heat generated by high-power semiconductor devices such as power transistors and optoelectronics such as lasers and light-emitting diodes to a fluid medium, thermal radiation on the fluid flow used in spectroscopy to study the properties of materials and also used in thermal imaging to capture and display the infrared radiation emitted by objects.

Originality/value

Micropolar fluid flow across stretching/shrinking surfaces is examined. Biot number and radiation effects are included in the energy equation. An increase in the volume fraction decreases the momentum boundary layer thickness. Nusselt numbers and skin friction coefficients are presented versus Reynolds numbers. A dual solution is obtained for a shrinking surface.



中文翻译:


倾斜磁场加速表面微极性纳米流体流动的线性稳定性分析


 目的


本文的目的是研究具有共轭传热和质量蒸腾的二维微极性流体流动。所考虑的纳米流体具有石墨烯纳米颗粒。


设计/方法论/途径


通过相似变换将控制非线性偏微分方程转换为非线性常微分方程。然后,为了分析流动,作者推导了流动问题的对偶解。毕奥数和辐射效应包含在能量方程中。利用边界条件求解动量方程,利用超几何级数解求解温度方程。努塞尔数和表面摩擦系数作为雷诺数的函数来计算。此外,该问题还受到其他参数的控制,即磁参数、辐射参数、普朗特数和质量蒸腾。由于石墨烯的高导热性,石墨烯纳米流体已显示出有希望的导热性增强效果,并且具有影响热边界层的广泛应用,可用作电子设备中的冷却剂和热管理系统或各种工业过程中的传热流体。

 发现


结果表明,增加磁场会降低动量并增加热辐射。热源/汇参数增加了热边界层。增加体积分数会降低速度分布并提高温度。增加 Eringen 参数会增加流体流动的动量。应用领域包括聚合物片材、薄膜和片材的挤出、塑料线的制造、纤维的制造和晶体的生长等。热源/散热器通常用于电子设备中,将功率晶体管等高功率半导体器件和激光器、发光二极管等光电子器件产生的热量传递到流体介质,光谱学中使用的流体流动上的热辐射研究材料的特性,也用于热成像以捕获和显示物体发出的红外辐射。

 原创性/价值


检查穿过拉伸/收缩表面的微极性流体流动。比奥数和辐射效应包含在能量方程中。体积分数的增加减小了动量边界层厚度。努塞尔数和表面摩擦系数与雷诺数的关系。获得收缩表面的对偶解。

更新日期:2024-07-26
down
wechat
bug