当前位置:
X-MOL 学术
›
Annu. Rev. Nucl. Part. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Novel Liquid Argon Time-Projection Chamber Readouts
Annual Review of Nuclear and Particle Science ( IF 9.1 ) Pub Date : 2024-07-10 , DOI: 10.1146/annurev-nucl-102422-035255 Jonathan Asaadi 1 , Daniel A. Dwyer 2 , Brooke Russell 2, 3
Annual Review of Nuclear and Particle Science ( IF 9.1 ) Pub Date : 2024-07-10 , DOI: 10.1146/annurev-nucl-102422-035255 Jonathan Asaadi 1 , Daniel A. Dwyer 2 , Brooke Russell 2, 3
Affiliation
Liquid argon time-projection chambers (LArTPCs) have become a prominent tool for experiments in particle physics. Recent years have yielded significant advances in the techniques used to capture the signals generated by these cryogenic detectors. This article summarizes these novel developments for detection of ionization electrons and scintillation photons in LArTPCs. New methods to capture ionization signals address the challenges of scaling traditional techniques to the large scales necessary for future experiments. Pixelated readouts improve signal fidelity and expand the applicability of LArTPCs to higher-rate environments. Methods that leverage amplification in argon enable measurements in the keV regime and below. Techniques to enhance collection of argon scintillation photons improve calorimetry and expand the physics program for very large detectors. Future efforts aim to demonstrate systems for the combined detection of both electrons and photons.
中文翻译:
新型液氩时间投影室读数
液氩时间投影室 (LArTPC) 已成为粒子物理学实验的重要工具。近年来,用于捕获这些低温探测器产生的信号的技术取得了重大进展。本文总结了这些用于检测 LArTPC 中电离电子和闪烁光子的新进展。捕获电离信号的新方法解决了将传统技术扩展到未来实验所需的大规模的挑战。像素化读数提高了信号保真度,并将 LArTPC 扩展到更高速率环境的适用性。利用氩气中扩增的方法可以在 keV 及以下范围内进行测量。增强氩闪烁光子收集的技术改进了量热法并扩展了超大型探测器的物理程序。未来的工作旨在展示电子和光子的组合检测系统。
更新日期:2024-07-10
中文翻译:
新型液氩时间投影室读数
液氩时间投影室 (LArTPC) 已成为粒子物理学实验的重要工具。近年来,用于捕获这些低温探测器产生的信号的技术取得了重大进展。本文总结了这些用于检测 LArTPC 中电离电子和闪烁光子的新进展。捕获电离信号的新方法解决了将传统技术扩展到未来实验所需的大规模的挑战。像素化读数提高了信号保真度,并将 LArTPC 扩展到更高速率环境的适用性。利用氩气中扩增的方法可以在 keV 及以下范围内进行测量。增强氩闪烁光子收集的技术改进了量热法并扩展了超大型探测器的物理程序。未来的工作旨在展示电子和光子的组合检测系统。