当前位置: X-MOL 学术Inorg. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Research on the Construction of a Series of Transition Metal-Substituted Keggin-Type TMSPOMs@PCN-224 Composites through the Encapsulation Method and Their Electron Transfer Mechanism in CO2RR
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2024-06-11 , DOI: 10.1021/acs.inorgchem.4c00840
Yan Zhang 1 , Can Li 1 , Lei Shu 1 , Yun-Lei Teng 1 , Bao-Xia Dong 1
Affiliation  

In order to take advantage of the distinct reversible multielectron transfer properties of polyoxometalates (POMs) and increase the electron density at the active sites during the electrochemical reduction of CO2 (CO2RR), a range of transition metal-doped polyoxometalates (TMSPOMs) was entrapped within the porphyrin-based framework of PCN-224 via an encapsulation method, known as TMSPOMs@PCN-224 (TMSPOMs = [XW11O39MII(H2O)]n–, [XW11O40VIV]n–, M = CoII, MnII; X = Si, n = 6; X = P, n = 5). The central elements (Si, P) and the incorporated transition metals (VIV, CoII, and MnII) both play a role in adjusting the electronic structure and electron transfer during the CO2RR process. Remarkably, the composite material with cobalt substitution displayed significantly improved performance. Through fine-tuning the POM loading, the electrocatalytic activity was optimized, leading to an impressive Faradaic efficiency for CO production (FECO) of 89.9% for SiW11Co@PCN-224, a significant improvement compared to the 12.1% FECO of PCN-224. Furthermore, the electrochemical stability of this catalyst was demonstrated over 20 h. Comparative analyses involving six composite materials indicated a relationship between the negative charge of the polyanions and their ability to facilitate effective electron transfer, ultimately enhancing the catalyst’s performance. Meanwhile, these findings were supported by density functional theory (DFT) calculations.

中文翻译:


封装法构建一系列过渡金属取代Keggin型TMSPOMs@PCN-224复合材料及其在CO2RR中的电子传递机制研究



为了利用多金属氧酸盐 (POM) 独特的可逆多电子转移特性并增加 CO 2 (CO 2 RR) 电化学还原过程中活性位点的电子密度,一系列过渡金属掺杂的多金属氧酸盐 (TMSPOM)通过封装方法被捕获在基于卟啉的 PCN-224 框架内,称为 TMSPOMs@PCN-224 (TMSPOMs = [XW 11 O 39 M II (H 2 O)] n– , [XW 11 O 40 V IV ] n– , M = Co II , Mn II ; X = Si, n = 6; X = P, n = 5)。中心元素(Si、P)和掺入的过渡金属(V IV 、Co II和Mn II )都在CO 2 RR过程中发挥调节电子结构和电子转移的作用。值得注意的是,钴替代的复合材料表现出显着改善的性能。通过微调 POM 负载量,优化了电催化活性,SiW 11 Co@PCN-224 的 CO 生成法拉第效率 (FE CO ) 达到了 89.9%,与 12.1% 的 FE CO相比有了显着提高。 PCN-224。此外,该催化剂的电化学稳定性在20小时内得到了证明。涉及六种复合材料的比较分析表明,聚阴离子的负电荷与其促进有效电子转移的能力之间存在关系,最终提高了催化剂的性能。 同时,这些发现得到了密度泛函理论(DFT)计算的支持。
更新日期:2024-06-11
down
wechat
bug