当前位置:
X-MOL 学术
›
Transp. Res. Part C Emerg. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
An integrated model for airport runway assignment and aircraft trajectory optimisation
Transportation Research Part C: Emerging Technologies ( IF 7.6 ) Pub Date : 2024-02-07 , DOI: 10.1016/j.trc.2024.104498 Adrian Barea , Raul de Celis , Luis Cadarso
Transportation Research Part C: Emerging Technologies ( IF 7.6 ) Pub Date : 2024-02-07 , DOI: 10.1016/j.trc.2024.104498 Adrian Barea , Raul de Celis , Luis Cadarso
Air traffic management of terminal manoeuvring area involves high complexity as air traffic converges to airports. In addition, air traffic is currently experiencing a remarkable growth despite the COVID19 pandemic effects. This trend, which is expected to continue in the mid and near future, motivates the development of methodologies that improve the efficiency and automatisation of air traffic management processes to efficiently prevent bottlenecks in current airports instead of expanding or building new facilities, which usually implies higher costs. Specifically, runway assignment is of capital importance for the correct exploitation of current airports capacity. In this paper, a mixed integer non-linear model is presented which deals with aircraft approach and landing operations. It integrates decisions regarding runway assignment and trajectory optimisation. Since this problem is difficult to be solved, a Benders decomposition is proposed. The master model deals with runway assignment, resulting in a mixed integer linear programming model. The submodel deals with the trajectory determination problem, resulting in a nonlinear programming model that minimises a combination of fuel consumption and aircraft delay while complying with operational constraints. In addition, a rolling horizon approach is employed for real-size case studies, which systematically optimises operations within 30-min intervals. Computational results on real-world problem instances of Madrid–Barajas airport are reported. Our solutions are found to be tractable and robust in the face of data variations.
中文翻译:
机场跑道分配和飞机轨迹优化的集成模型
由于空中交通向机场汇聚,航站楼机动区的空中交通管理复杂性较高。此外,尽管受到新冠病毒大流行的影响,目前航空交通量仍在显着增长。这种趋势预计将在中短期内持续下去,推动开发提高空中交通管理流程效率和自动化的方法,以有效防止当前机场的瓶颈,而不是扩建或建造新设施,这通常意味着更高的成本成本。具体而言,跑道分配对于正确利用现有机场容量至关重要。在本文中,提出了一个处理飞机进场和着陆操作的混合整数非线性模型。它集成了有关跑道分配和轨迹优化的决策。由于这个问题很难解决,因此提出了Benders分解。主模型处理跑道分配,从而产生混合整数线性规划模型。该子模型处理轨迹确定问题,产生非线性编程模型,在遵守运行约束的同时最大限度地减少燃油消耗和飞机延误的组合。此外,还采用滚动范围方法进行实际规模的案例研究,在 30 分钟的时间间隔内系统地优化操作。报告了马德里-巴拉哈斯机场现实世界问题实例的计算结果。事实证明,我们的解决方案在面对数据变化时易于处理且稳健。
更新日期:2024-02-07
中文翻译:
机场跑道分配和飞机轨迹优化的集成模型
由于空中交通向机场汇聚,航站楼机动区的空中交通管理复杂性较高。此外,尽管受到新冠病毒大流行的影响,目前航空交通量仍在显着增长。这种趋势预计将在中短期内持续下去,推动开发提高空中交通管理流程效率和自动化的方法,以有效防止当前机场的瓶颈,而不是扩建或建造新设施,这通常意味着更高的成本成本。具体而言,跑道分配对于正确利用现有机场容量至关重要。在本文中,提出了一个处理飞机进场和着陆操作的混合整数非线性模型。它集成了有关跑道分配和轨迹优化的决策。由于这个问题很难解决,因此提出了Benders分解。主模型处理跑道分配,从而产生混合整数线性规划模型。该子模型处理轨迹确定问题,产生非线性编程模型,在遵守运行约束的同时最大限度地减少燃油消耗和飞机延误的组合。此外,还采用滚动范围方法进行实际规模的案例研究,在 30 分钟的时间间隔内系统地优化操作。报告了马德里-巴拉哈斯机场现实世界问题实例的计算结果。事实证明,我们的解决方案在面对数据变化时易于处理且稳健。