当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Precise Tailoring of Lithium-Ion Transport for Ultralong-Cycling Dendrite-Free All-Solid-State Lithium Metal Batteries
Advanced Materials ( IF 27.4 ) Pub Date : 2023-11-22 , DOI: 10.1002/adma.202302647 Weihan Li 1, 2 , James A Quirk 3 , Minsi Li 1, 2 , Wei Xia 4 , Lucy M Morgan 5 , Wen Yin 6 , Matthew Zheng 1 , Leighanne C Gallington 7 , Yang Ren 8, 9 , Ning Zhu 10 , Graham King 10 , Renfei Feng 10 , Ruying Li 1 , James A Dawson 3, 11 , Tsun-Kong Sham 2 , Xueliang Sun 1, 4
Advanced Materials ( IF 27.4 ) Pub Date : 2023-11-22 , DOI: 10.1002/adma.202302647 Weihan Li 1, 2 , James A Quirk 3 , Minsi Li 1, 2 , Wei Xia 4 , Lucy M Morgan 5 , Wen Yin 6 , Matthew Zheng 1 , Leighanne C Gallington 7 , Yang Ren 8, 9 , Ning Zhu 10 , Graham King 10 , Renfei Feng 10 , Ruying Li 1 , James A Dawson 3, 11 , Tsun-Kong Sham 2 , Xueliang Sun 1, 4
Affiliation
All-solid-state lithium metal batteries can address crucial challenges regarding insufficient battery cycling life and energy density. The demonstration of long-cycling dendrite-free all-solid-state lithium metal batteries requires precise tailoring of lithium-ion transport of solid-state electrolytes (SSEs). In this work, a proof of concept is reported for precise tailoring of lithium-ion transport of a halide SSE, Li3InCl6, including intragranular (within grains) but also intergranular (between grains) lithium-ion transport. Lithium-ion migration tailoring mechanism in crystals is developed by unexpected enhanced Li, In, and Cl vacancy populations and lower energy barrier for hopping. The lithium-ion transport tailoring mechanism between the grains is determined by the elimination of voids between grains and the formation of unexpected supersonic conducting grain boundaries, boosting the lithium dendrite suppression ability of SSE. Due to boosted lithium-ion conduction and dendrite-suppression ability, the all-solid-state lithium metal batteries coupled with Ni-rich LiNi0.83Co0.12Mn0.05O2 cathodes and lithium metal anodes demonstrate breakthroughs in electrochemical performance by achieving extremely long cycling life at a high current density of 0.5 C (2000 cycles, 93.7% capacity retention). This concept of precise tailoring of lithium-ion transport provides a cost, time, and energy efficient solution to conquer the remaining challenges in all-solid-state lithium-metal batteries for fast developing electric vehicle markets.
中文翻译:
超长循环无枝晶全固态锂金属电池的锂离子传输的精确定制
全固态锂金属电池可以解决电池循环寿命和能量密度不足的关键挑战。长循环无枝晶全固态锂金属电池的演示需要精确定制固态电解质(SSE)的锂离子传输。在这项工作中,报告了精确定制卤化物 SSE(Li 3 InCl 6 )锂离子传输的概念验证,包括晶粒内(晶粒内)和晶粒间(晶粒之间)锂离子传输。晶体中的锂离子迁移定制机制是通过意外增强的 Li、In 和 Cl 空位数量以及较低的跳跃能垒而开发的。晶粒之间的锂离子传输剪裁机制是通过消除晶粒之间的空隙和形成意想不到的超音速导电晶界来确定的,从而提高了SSE的锂枝晶抑制能力。由于增强的锂离子传导和枝晶抑制能力,与富镍LiNi 0.83 Co 0.12 Mn 0.05 O 2正极和锂金属负极结合的全固态锂金属电池通过实现极长的循环,在电化学性能方面取得了突破0.5 C 高电流密度下的寿命(2000 次循环,93.7% 容量保持率)。这种精确定制锂离子传输的概念提供了一种成本、时间和能源高效的解决方案,以克服快速发展的电动汽车市场的全固态锂金属电池的剩余挑战。
更新日期:2023-11-22
中文翻译:
超长循环无枝晶全固态锂金属电池的锂离子传输的精确定制
全固态锂金属电池可以解决电池循环寿命和能量密度不足的关键挑战。长循环无枝晶全固态锂金属电池的演示需要精确定制固态电解质(SSE)的锂离子传输。在这项工作中,报告了精确定制卤化物 SSE(Li 3 InCl 6 )锂离子传输的概念验证,包括晶粒内(晶粒内)和晶粒间(晶粒之间)锂离子传输。晶体中的锂离子迁移定制机制是通过意外增强的 Li、In 和 Cl 空位数量以及较低的跳跃能垒而开发的。晶粒之间的锂离子传输剪裁机制是通过消除晶粒之间的空隙和形成意想不到的超音速导电晶界来确定的,从而提高了SSE的锂枝晶抑制能力。由于增强的锂离子传导和枝晶抑制能力,与富镍LiNi 0.83 Co 0.12 Mn 0.05 O 2正极和锂金属负极结合的全固态锂金属电池通过实现极长的循环,在电化学性能方面取得了突破0.5 C 高电流密度下的寿命(2000 次循环,93.7% 容量保持率)。这种精确定制锂离子传输的概念提供了一种成本、时间和能源高效的解决方案,以克服快速发展的电动汽车市场的全固态锂金属电池的剩余挑战。