当前位置:
X-MOL 学术
›
Chem. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Accelerating Quantum Materials Development with Advances in Transmission Electron Microscopy
Chemical Reviews ( IF 51.4 ) Pub Date : 2023-11-18 , DOI: 10.1021/acs.chemrev.2c00917 Parivash Moradifar 1 , Yin Liu 1, 2 , Jiaojian Shi 1, 3 , Matti Lawton Siukola Thurston 1 , Hendrik Utzat 1, 4 , Tim B van Driel 5 , Aaron M Lindenberg 1, 3 , Jennifer A Dionne 1, 6
Chemical Reviews ( IF 51.4 ) Pub Date : 2023-11-18 , DOI: 10.1021/acs.chemrev.2c00917 Parivash Moradifar 1 , Yin Liu 1, 2 , Jiaojian Shi 1, 3 , Matti Lawton Siukola Thurston 1 , Hendrik Utzat 1, 4 , Tim B van Driel 5 , Aaron M Lindenberg 1, 3 , Jennifer A Dionne 1, 6
Affiliation
Quantum materials are driving a technology revolution in sensing, communication, and computing, while simultaneously testing many core theories of the past century. Materials such as topological insulators, complex oxides, superconductors, quantum dots, color center-hosting semiconductors, and other types of strongly correlated materials can exhibit exotic properties such as edge conductivity, multiferroicity, magnetoresistance, superconductivity, single photon emission, and optical-spin locking. These emergent properties arise and depend strongly on the material’s detailed atomic-scale structure, including atomic defects, dopants, and lattice stacking. In this review, we describe how progress in the field of electron microscopy (EM), including in situ and in operando EM, can accelerate advances in quantum materials and quantum excitations. We begin by describing fundamental EM principles and operation modes. We then discuss various EM methods such as (i) EM spectroscopies, including electron energy loss spectroscopy (EELS), cathodoluminescence (CL), and electron energy gain spectroscopy (EEGS); (ii) four-dimensional scanning transmission electron microscopy (4D-STEM); (iii) dynamic and ultrafast EM (UEM); (iv) complementary ultrafast spectroscopies (UED, XFEL); and (v) atomic electron tomography (AET). We describe how these methods could inform structure–function relations in quantum materials down to the picometer scale and femtosecond time resolution, and how they enable precision positioning of atomic defects and high-resolution manipulation of quantum materials. For each method, we also describe existing limitations to solve open quantum mechanical questions, and how they might be addressed to accelerate progress. Among numerous notable results, our review highlights how EM is enabling identification of the 3D structure of quantum defects; measuring reversible and metastable dynamics of quantum excitations; mapping exciton states and single photon emission; measuring nanoscale thermal transport and coupled excitation dynamics; and measuring the internal electric field and charge density distribution of quantum heterointerfaces- all at the quantum materials’ intrinsic atomic and near atomic-length scale. We conclude by describing open challenges for the future, including achieving stable sample holders for ultralow temperature (below 10K) atomic-scale spatial resolution, stable spectrometers that enable meV energy resolution, and high-resolution, dynamic mapping of magnetic and spin fields. With atomic manipulation and ultrafast characterization enabled by EM, quantum materials will be poised to integrate into many of the sustainable and energy-efficient technologies needed for the 21st century.
中文翻译:
利用透射电子显微镜的进步加速量子材料的开发
量子材料正在推动传感、通信和计算领域的技术革命,同时检验上个世纪的许多核心理论。拓扑绝缘体、复合氧化物、超导体、量子点、色心半导体和其他类型的强相关材料等材料可以表现出边缘导电性、多铁性、磁阻、超导性、单光子发射和光自旋等奇异特性锁定。这些新出现的特性在很大程度上取决于材料的详细原子尺度结构,包括原子缺陷、掺杂剂和晶格堆叠。在这篇综述中,我们描述了电子显微镜 (EM) 领域的进展,包括原位和操作 EM,如何加速量子材料和量子激发的进步。我们首先描述基本的 EM 原理和操作模式。然后我们讨论各种 EM 方法,例如 (i) EM 光谱,包括电子能量损失光谱 (EELS)、阴极发光 (CL) 和电子能量增益光谱 (EEGS); (ii) 四维扫描透射电子显微镜(4D-STEM); (iii) 动态和超快电磁 (UEM); (iv) 互补超快光谱(UED、XFEL); (v) 原子电子断层扫描 (AET)。我们描述了这些方法如何告知皮米尺度和飞秒时间分辨率的量子材料中的结构-功能关系,以及它们如何实现原子缺陷的精确定位和量子材料的高分辨率操纵。对于每种方法,我们还描述了解决开放量子力学问题的现有局限性,以及如何解决这些局限性以加速进展。 在众多值得注意的结果中,我们的综述强调了 EM 如何能够识别量子缺陷的 3D 结构;测量量子激发的可逆和亚稳态动力学;绘制激子态和单光子发射;测量纳米级热传输和耦合激发动力学;并测量量子异质界面的内部电场和电荷密度分布——所有这些都在量子材料的固有原子和近原子长度尺度上进行。最后,我们描述了未来面临的挑战,包括实现超低温(低于 10K)原子级空间分辨率的稳定样品架、实现 meV 能量分辨率的稳定光谱仪,以及磁场和自旋场的高分辨率动态映射。凭借 EM 实现的原子操控和超快表征,量子材料将有望融入21世纪所需的许多可持续和节能技术。
更新日期:2023-11-18
中文翻译:
利用透射电子显微镜的进步加速量子材料的开发
量子材料正在推动传感、通信和计算领域的技术革命,同时检验上个世纪的许多核心理论。拓扑绝缘体、复合氧化物、超导体、量子点、色心半导体和其他类型的强相关材料等材料可以表现出边缘导电性、多铁性、磁阻、超导性、单光子发射和光自旋等奇异特性锁定。这些新出现的特性在很大程度上取决于材料的详细原子尺度结构,包括原子缺陷、掺杂剂和晶格堆叠。在这篇综述中,我们描述了电子显微镜 (EM) 领域的进展,包括原位和操作 EM,如何加速量子材料和量子激发的进步。我们首先描述基本的 EM 原理和操作模式。然后我们讨论各种 EM 方法,例如 (i) EM 光谱,包括电子能量损失光谱 (EELS)、阴极发光 (CL) 和电子能量增益光谱 (EEGS); (ii) 四维扫描透射电子显微镜(4D-STEM); (iii) 动态和超快电磁 (UEM); (iv) 互补超快光谱(UED、XFEL); (v) 原子电子断层扫描 (AET)。我们描述了这些方法如何告知皮米尺度和飞秒时间分辨率的量子材料中的结构-功能关系,以及它们如何实现原子缺陷的精确定位和量子材料的高分辨率操纵。对于每种方法,我们还描述了解决开放量子力学问题的现有局限性,以及如何解决这些局限性以加速进展。 在众多值得注意的结果中,我们的综述强调了 EM 如何能够识别量子缺陷的 3D 结构;测量量子激发的可逆和亚稳态动力学;绘制激子态和单光子发射;测量纳米级热传输和耦合激发动力学;并测量量子异质界面的内部电场和电荷密度分布——所有这些都在量子材料的固有原子和近原子长度尺度上进行。最后,我们描述了未来面临的挑战,包括实现超低温(低于 10K)原子级空间分辨率的稳定样品架、实现 meV 能量分辨率的稳定光谱仪,以及磁场和自旋场的高分辨率动态映射。凭借 EM 实现的原子操控和超快表征,量子材料将有望融入21世纪所需的许多可持续和节能技术。