当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Rational Design of S-Scheme Heterojunction toward Efficient Photocatalytic Cellulose Reforming for H2 and Formic Acid in Pure Water
Advanced Materials ( IF 27.4 ) Pub Date : 2023-10-08 , DOI: 10.1002/adma.202307962 Yang You 1 , Shangxian Chen 1 , Jie Zhao 1 , Jianfeng Lin 1 , Donglian Wen 1 , Pengzhan Sha 1 , Libo Li 2 , Donglei Bu 1 , Shaoming Huang 1, 3
Advanced Materials ( IF 27.4 ) Pub Date : 2023-10-08 , DOI: 10.1002/adma.202307962 Yang You 1 , Shangxian Chen 1 , Jie Zhao 1 , Jianfeng Lin 1 , Donglian Wen 1 , Pengzhan Sha 1 , Libo Li 2 , Donglei Bu 1 , Shaoming Huang 1, 3
Affiliation
Photocatalytic cellulose reforming usually requires harsh conditions due to its sluggish kinetics. Here, a hollow structural S-scheme heterojunction of ZnSe and oxygen vacancy enriched TiO2, namely, h-ZnSe/Pt@TiO2, is designed and fabricated, with which the photocatalytic reforming of cellulose for H2 and formic acid is realized in pure water. H2 and formic acid productivity of 1858 and 372 µmol g−1 h−1 and a steady H2 evolution for 300 h are achieved with α-cellulose. Comparable photocatalytic activity can also be achieved using various cellulose sources. It is experimentally proven that the photogenerated charge transfer follows an S-scheme mechanism, which not only promotes the charge separation but also preserves the higher reductive and oxidative abilities of the ZnSe and TiO2, respectively. Furthermore, the polyhydroxy species produced during cellulose degradation are favored to adsorb on the oxygen vacancy enriched TiO2 surface, which promotes the photocatalytic reforming process and is accounted to the preservation of formic acid as the major solution-phase product. In addition, sequential reactions of oxidation of aldehydes and elimination of formic acid of the cellulose degradation process are revealed. This work provides a photocatalytic strategy to sustainably produce hydrogen and value-added chemicals from biomass under the most environmentally benign condition, i.e., pure water.
中文翻译:
S型异质结的合理设计,用于纯水中氢气和甲酸的高效光催化纤维素重整
由于其动力学缓慢,光催化纤维素重整通常需要苛刻的条件。本文设计并制备了ZnSe和富氧空位TiO 2的中空结构S型异质结,即h-ZnSe/Pt@TiO 2 ,实现了纤维素对H 2和甲酸的光催化重整。纯净水。使用α-纤维素实现了1858和372 µmol g -1 h -1的H 2和甲酸生产率以及300小时的稳定H 2释放。使用各种纤维素源也可以实现相当的光催化活性。实验证明,光生电荷转移遵循S型机制,不仅促进了电荷分离,而且分别保留了ZnSe和TiO 2较高的还原和氧化能力。此外,纤维素降解过程中产生的多羟基物质有利于吸附在富氧空位的TiO 2表面上,这促进了光催化重整过程,并且有助于将甲酸保存为主要溶液相产物。此外,还揭示了纤维素降解过程中醛的氧化和甲酸的消除的连续反应。这项工作提供了一种光催化策略,可以在最环保的条件(即纯水)下从生物质中可持续地生产氢气和增值化学品。
更新日期:2023-10-08
中文翻译:
S型异质结的合理设计,用于纯水中氢气和甲酸的高效光催化纤维素重整
由于其动力学缓慢,光催化纤维素重整通常需要苛刻的条件。本文设计并制备了ZnSe和富氧空位TiO 2的中空结构S型异质结,即h-ZnSe/Pt@TiO 2 ,实现了纤维素对H 2和甲酸的光催化重整。纯净水。使用α-纤维素实现了1858和372 µmol g -1 h -1的H 2和甲酸生产率以及300小时的稳定H 2释放。使用各种纤维素源也可以实现相当的光催化活性。实验证明,光生电荷转移遵循S型机制,不仅促进了电荷分离,而且分别保留了ZnSe和TiO 2较高的还原和氧化能力。此外,纤维素降解过程中产生的多羟基物质有利于吸附在富氧空位的TiO 2表面上,这促进了光催化重整过程,并且有助于将甲酸保存为主要溶液相产物。此外,还揭示了纤维素降解过程中醛的氧化和甲酸的消除的连续反应。这项工作提供了一种光催化策略,可以在最环保的条件(即纯水)下从生物质中可持续地生产氢气和增值化学品。