Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Uncovering and Experimental Realization of Multimodal 3D Topological Metamaterials for Low-Frequency and Multiband Elastic Wave Control
Advanced Science ( IF 14.3 ) Pub Date : 2023-09-04 , DOI: 10.1002/advs.202304793 Patrick Dorin 1 , Mustafa Khan 1 , K W Wang 1
Advanced Science ( IF 14.3 ) Pub Date : 2023-09-04 , DOI: 10.1002/advs.202304793 Patrick Dorin 1 , Mustafa Khan 1 , K W Wang 1
Affiliation
Topological mechanical metamaterials unlock confined and robust elastic wave control. Recent breakthroughs have precipitated the development of 3D topological metamaterials, which facilitate extraordinary wave manipulation along 2D planar and layer-dependent waveguides. The 3D topological metamaterials studied thus far are constrained to function in single-frequency bandwidths that are typically in a high-frequency regime, and a comprehensive experimental investigation remains elusive. In this paper, these research gaps are addressed and the state of the art is advanced through the synthesis and experimental realization of a 3D topological metamaterial that exploits multimodal local resonance to enable low-frequency elastic wave control over multiple distinct frequency bands. The proposed metamaterial is geometrically configured to create multimodal local resonators whose frequency characteristics govern the emergence of four unique low-frequency topological states. Numerical simulations uncover how these topological states can be employed to achieve polarization-, frequency-, and layer-dependent wave manipulation in 3D structures. An experimental study results in the attainment of complete wave fields that illustrate 2D topological waveguides and multi-polarized wave control in a physical testbed. The outcomes from this work provide insight that will aid future research on 3D topological mechanical metamaterials and reveal the applicability of the proposed metamaterial for wave control applications.
中文翻译:
用于低频和多频带弹性波控制的多模态 3D 拓扑超材料的发现和实验实现
拓扑机械超材料解锁了受限且鲁棒的弹性波控制。最近的突破促进了 3D 拓扑超材料的发展,它有助于沿着 2D 平面和层相关波导进行非凡的波操纵。迄今为止研究的 3D 拓扑超材料仅限于在通常处于高频状态的单频带宽中运行,并且全面的实验研究仍然难以实现。在本文中,通过合成和实验实现 3D 拓扑超材料,解决了这些研究空白,并推进了最新技术,该材料利用多模态局部谐振来实现多个不同频段的低频弹性波控制。所提出的超材料在几何上配置为创建多模态局部谐振器,其频率特性控制四种独特的低频拓扑状态的出现。数值模拟揭示了如何利用这些拓扑状态来实现 3D 结构中的偏振、频率和层相关的波操纵。实验研究获得了完整的波场,展示了物理测试台中的二维拓扑波导和多极化波控制。这项工作的成果提供了见解,将有助于 3D 拓扑机械超材料的未来研究,并揭示所提出的超材料在波控制应用中的适用性。
更新日期:2023-09-04
中文翻译:
用于低频和多频带弹性波控制的多模态 3D 拓扑超材料的发现和实验实现
拓扑机械超材料解锁了受限且鲁棒的弹性波控制。最近的突破促进了 3D 拓扑超材料的发展,它有助于沿着 2D 平面和层相关波导进行非凡的波操纵。迄今为止研究的 3D 拓扑超材料仅限于在通常处于高频状态的单频带宽中运行,并且全面的实验研究仍然难以实现。在本文中,通过合成和实验实现 3D 拓扑超材料,解决了这些研究空白,并推进了最新技术,该材料利用多模态局部谐振来实现多个不同频段的低频弹性波控制。所提出的超材料在几何上配置为创建多模态局部谐振器,其频率特性控制四种独特的低频拓扑状态的出现。数值模拟揭示了如何利用这些拓扑状态来实现 3D 结构中的偏振、频率和层相关的波操纵。实验研究获得了完整的波场,展示了物理测试台中的二维拓扑波导和多极化波控制。这项工作的成果提供了见解,将有助于 3D 拓扑机械超材料的未来研究,并揭示所提出的超材料在波控制应用中的适用性。